|
楼主 |
发表于 2007-5-14 14:23:50
|
显示全部楼层
《狄拉克方程》——翻译连载(12)
[align=justify]Scattering theory is the subject of Chapter 8; we give a geometric, timedependent proof of asymptotic completeness and describe the properties of wave and scattering operators in the case of electric, scalar and magnetic fields. For the purpose of scattering theory, magnetic fields are best described in the Poincare gauge which makes them look short-range even if they are long-range (there is an unmodified scattering operator even if the classical motion has no asymptotes). The scattering theory of the Dirac equation in one-dimensional time dependent scalar fields has an interesting application to the theory of solitons. The Dirac equation is related to a nonlinear wave equation (the “modified Korteweg-de Vries equation’) in quite the same way as the one-dimensional Schrodinger equation is related to the Korteweg-de Vries equation. Supersymmetry can be used as a tool for understanding (and “inverting”) the Miura transformation which links the solutions of the KdV and mKdv equations. These connections are explained in Chapter 9.
第8章的内容是散射理论;对于电磁场和标量场情形,我们给出一个渐近完备性的和描述波以及散射算子的几何学的含时的证明。因散射理论起见,磁场在庞加莱度规——即使是长程作亦致使其表现为短程作用——中(散射算子保持其不变性性,即使经典的运动无渐近线)得到最好地最好的描述。一维含时标量场的狄拉克算子的散射理论在solirons理论中有着有趣的应用。在一维Schr鰀inger方程关联Korteweg-de Vries方程完全相同的情形,狄拉克方程涉及到非线性波动方程(即改进的Korteweg-de Vries方程)。超对称能够被作为一种理解(和“转化”)关联KdV和mKdV解的Miura变换的一种工具。对这些联系的解释构成第9章的内容。 |
|