加州大学旧金山分校的生物化学与生物物理学教授Bruce Alberts将于今年3月接掌《科学》杂志的主编一职。Marc Kirschner在本期人物简介中记述了Alberts博士的成就。他开始时从事的是DNA的生物化学研究。在离开“工作台”后,Alberts将精力集中在了教育和公共服务上,并于1993年成为美国国家科学院(National Academies of Science)的主席。他还同时担任国际科学院(InterAcademy)的共同主席及美国细胞生物学学会(American Society of Cell Biology)的主席。Kirschner在文章中写道,由Alberts担任《科学》的主编,“我们可以肯定担任这一位置的是最佳的人选”。
两项新的研究显示,在保持热带森林中昆虫数量处于被控制的状态上,蝙蝠与鸟类所发挥的重要功能是一样的。研究人员已经有文献证明,鸟类在捕食昆虫活动中起着重要的作用,但是控制昆虫的某些荣誉可能应该归功于在夜间摄食的蝙蝠。Margareta Kalka及其同事对巴拿马低地森林地区进行了选择性的网覆,以达到在一日里的某些时间内将鸟类及蝙蝠隔离在网覆范围之外的目的。他们发现,蝙蝠确实能够显著降低昆虫的数量。在受到网覆保护的地区内,他们发现食草活动增加了,因为在网覆保护下,蝙蝠无法捕食昆虫,导致了食草昆虫的兴旺繁衍。Kimberly Williams Guillén及其同事发现,当他们在墨西哥咖啡种植园某些地区进行网覆后也看到了类似的效应。他们发现在整个一年中,蝙蝠在控制昆虫种群数量上的作用与鸟类同样重要。研究人员表示,随着蝙蝠数量的减少,像咖啡种植这样的农业生产可能会失去蝙蝠在控制昆虫方面所提供的关键性的“生态系统服务”。
新的研究显示,在动物肠道中存在的两个细菌品种正在融合成另一种单独的品种。这一情况可能开始于牲畜的驯化过程,因为该过程使这两种细菌在鸡、牛及其他动物体内相遇。细菌间的基因交换如此频繁,以至于很难为不同种类的细菌建立系谱,而我们对细菌自然群体的生态学知识尚处于初始阶段。虽然如此,空肠弯曲菌与大肠弯曲杆菌仍然被看作截然不同的细菌品种,而这两种细菌是引起世界范围内人类胃肠道炎症的最常见的致病菌。Samuel K. Sheppard及其同事对数个不同的动物群体中的这两种细菌的基因序列进行了分析并得出结论,即这些细菌的基因已经混合到两种细菌的基因组正在合二为一的程度。文章作者提出,先前存在于这两个品种之间的屏障可能已在新的环境中消失——假如是这样,按照进化论的说法,这种新的环境可能就是指在适于焙烤的嫩鸡或其他牲畜的肠道之内。
Colin Russell及其同事对1.3万个A型流感(H3N2)样本进行了分析,这些样本是在2002年到2007年间在6个大陆地区采集到的。这种流感亚型目前是造成人类流感有关疾病及死亡的主要原因。研究人员对所有样本中的一种叫做血凝素抗原的表面蛋白的三维结构的差别进行了比较。血凝素可帮助病毒进入细胞内,因此其形状哪怕是很小的变化都可影响该病毒致病的能力。在整个样本的一个亚组中,研究人员还对编码血凝素的基因序列进行了比较。对这些结果的综合分析使得研究人员在为期5年的时间段内,在其到达的不同的新地点时都可以辨识出不同的A型流感病毒株(H2N2)。这些结果披露,新的病毒株是在东亚和东南亚出现的,接着移向其他地方——大概是通过在国际间旅行的人携带传播——这些病毒株需要大约6~9个月的时间才到达欧洲和北美。再过几个月,这些病毒株最终到达南美洲,这是它们进化过程的“坟场”。
研究人员报道说,抗抑郁药fluoxetine可以使成年大鼠脑中与视觉有关的神经元回复到它们年轻时的更具可塑性的状态,并使其能够从某些类型的视觉损害中康复。这些发现表明,fluoxetine可能对治疗成年人的弱视有用,弱视也被称为“懒眼症”,这是一种相当常见的疾病。罹患该病的患者的一只眼睛比另外一只要弱,因为较弱的那只眼睛在患者孩童期的早期未被充分使用。这些结果还为一个尚未得到解答的问题提供了线索,即抗抑郁药是如何帮助调整抑郁症患者的情绪的,因为该线索提示脑可塑性可能是该疾病的一个重要部分。José Fernando Maya Vetencourt及其在意大利和芬兰的同事给成年大鼠喂食常规剂量的fluoxetine,而这些成年大鼠的视力已经受到损害,因为在它们早年发育的关键时期,它们的眼睛缺少与视觉图像的接触。研究人员发现,大鼠脑中的蛋白质表达及电信号在治疗后发生了变化,表明这种治疗已经使大鼠视觉系统神经元的可塑性得到恢复并促进了大鼠视觉的康复。