找回密码
 注册
搜索
热搜: 超星 读书 找书
查看: 430|回复: 0

[【推荐】] AT&T汇编语言与GCC内嵌汇编简介

[复制链接]
发表于 2010-2-18 09:13:29 | 显示全部楼层 |阅读模式
linux下面的汇编。
http://blog.csdn.net/freerock/archive/2007/09/04/1771143.aspx

一、AT&T 格式Linux 汇编语法格式
在 AT&T 汇编格式中,寄存器名要加上 '%' 作为前缀;而在 Intel 汇编格式中,寄存器名不需要加前缀。
在 AT&T 汇编格式中,用 '$' 前缀表示一个立即操作数;而在 Intel 汇编格式中,立即数的表示不用带任何前缀。
例如:
寄存器和立即数 AT&TIntel寄存器pushl %eaxpush eax立即数pushl $1push 1

AT&T 和 Intel 格式中的源操作数和目标操作数的位置正好相反。在 Intel 汇编格式中,目标操作数在源操作数的左边;而在 AT&T 汇编格式中,目标操作数在源操作数的右边。
在 AT&T 汇编格式中,操作数的字长由操作符的最后一个字母决定,后缀'b'、'w'、'l'分别表示操作数为字节(byte,8 比特)、字(word,16 比特)和长字(long,32比特);而在 Intel 汇编格式中,操作数的字长是用 \"byte ptr\" 和 \"word ptr\" 等前缀来表示的。例如:
操作数 AT&TIntel操作数位置addl $1, %eaxadd eax, 1操作数字长movb val, %almov al, byte ptr val
在 AT&T 汇编格式中,绝对转移和调用指令(jump/call)的操作数前要加上'*'作为前缀,而在 Intel 格式中则不需要。
远程转移指令和远程子调用指令的操作码,在 AT&T 汇编格式中为 \"ljump\" 和 \"lcall\",而在 Intel 汇编格式中则为 \"jmp far\" 和 \"call far\",即:
AT&TIntel
绝对转移ljump $section, $offset jmp far sectionffset
调用lcall $section, $offset call far sectionffset
远程返回lret $stack_adjustret far stack_adjust

在 AT&T 汇编格式中,内存操作数的寻址方式是
section:disp(base, index, scale)
而在 Intel 汇编格式中,内存操作数的寻址方式为:
section:[base + index*scale + disp]
由于 Linux 工作在保护模式下,用的是 32 位线性地址,所以在计算地址时不用考虑段基址和偏移量,而是采用如下的地址计算方法:
disp + base + index * scale
下面是一些内存操作数的例子:
AT&TIntel
movl -4(%ebp), %eax mov eax, [ebp - 4]
movl array(, %eax, 4), %eax mov eax, [eax*4 + array]
movw array(%ebx, %eax, 4), %cx mov cx, [ebx + 4*eax + array]
movb $4, %fs%eax)mov fs:eax, 4


二、Hello World!
既然所有程序设计语言的第一个例子都是在屏幕上打印一个字符串 \"Hello World!\",那我们也以这种方式来开始介绍 Linux 下的汇编语言程序设计。
在 Linux 操作系统中,你有很多办法可以实现在屏幕上显示一个字符串,但最简洁的方式是使用 Linux 内核提供的系统调用。使用这种方法最大的好处是可以直接和操作系统的内核进行通讯,不需要链接诸如 libc 这样的函数库,也不需要使用 ELF 解释器,因而代码尺寸小且执行速度快。
Linux 是一个运行在保护模式下的 32 位操作系统,采用 flat memory 模式,目前最常用到的是 ELF 格式的二进制代码。一个 ELF 格式的可执行程序通常划分为如下几个部分:.text、.data 和 .bss,其中 .text 是只读的代码区,.data 是可读可写的数据区,而 .bss 则是可读可写且没有初始化的数据区。代码区和数据区在 ELF 中统称为 section,根据实际需要你可以使用其它标准的 section,也可以添加自定义 section,但一个 ELF 可执行程序至少应该有一个 .text 部分。下面给出我们的第一个汇编程序,用的是 AT&T 汇编语言格式:
例1. AT&T 格式
#hello.s
.data # 数据段声明
msg : .string \"Hello, world!\\\\n\" # 要输出的字符串
len = . - msg # 字串长度
.text # 代码段声明
.global _start # 指定入口函数
_start: # 在屏幕上显示一个字符串
movl $len, %edx # 参数三:字符串长度
movl $msg, %ecx # 参数二:要显示的字符串
movl $1, %ebx # 参数一:文件描述符(stdout)
movl $4, %eax # 系统调用号(sys_write)
int $0x80 # 调用内核功能
# 退出程序
movl $0,%ebx # 参数一:退出代码
movl $1,%eax # 系统调用号(sys_exit)
int $0x80 # 调用内核功能
初次接触到 AT&T 格式的汇编代码时,很多程序员都认为太晦涩难懂了,没有关系,在 Linux 平台上你同样可以使用 Intel 格式来编写汇编程序:
例2. Intel 格式
hello.asm
section .data ;数据段声明
msg db \"Hello, world!\", 0xA ;要输出的字符串
len equ $ - msg ;字串长度
section .text ;代码段声明
global _start ;指定入口函数
_start: ;在屏幕上显示一个字符串
mov edx, len ;参数三:字符串长度
mov ecx, msg ;参数二:要显示的字符串
mov ebx, 1 ;参数一:文件描述符(stdout)
mov eax, 4 ;系统调用号(sys_write)
int 0x80 ;调用内核功能
;退出程序
mov ebx, 0 ;参数一:退出代码
mov eax, 1 ;系统调用号(sys_exit)
int 0x80 ;调用内核功能
上面两个汇编程序采用的语法虽然完全不同,但功能却都是调用 Linux 内核提供的 sys_write 来显示一个字符串,然后再调用 sys_exit 退出程序。在 Linux 内核源文件 include/asm-i386/unistd.h 中,可以找到所有系统调用的定义。
三、Linux 汇编工具
Linux 平台下的汇编工具虽然种类很多,但同 DOS/Windows 一样,最基本的仍然是汇编器、连接器和调试器。
1.汇编器
汇编器(assembler)的作用是将用汇编语言编写的源程序转换成二进制形式的目标代码。Linux 平台的标准汇编器是 GAS,它是 GCC 所依赖的后台汇编工具,通常包含在 binutils 软件包中。GAS 使用标准的 AT&T 汇编语法,可以用来汇编用 AT&T 格式编写的程序:
[xiaowp@gary code]$ as -o hello.o hello.s
Linux 平台上另一个经常用到的汇编器是 NASM,它提供了很好的宏指令功能,并能够支持相当多的目标代码格式,包括 bin、a.out、coff、elf、rdf 等。NASM 采用的是人工编写的语法分析器,因而执行速度要比 GAS 快很多,更重要的是它使用的是 Intel 汇编语法,可以用来编译用 Intel 语法格式编写的汇编程序:
[xiaowp@gary code]$ nasm -f elf hello.asm
2.链接器
由汇编器产生的目标代码是不能直接在计算机上运行的,它必须经过链接器的处理才能生成可执行代码。链接器通常用来将多个目标代码连接成一个可执行代码,这样可以先将整个程序分成几个模块来单独开发,然后才将它们组合(链接)成一个应用程序。 Linux 使用 ld 作为标准的链接程序,它同样也包含在 binutils 软件包中。汇编程序在成功通过 GAS 或 NASM 的编译并生成目标代码后,就可以使用 ld 将其链接成可执行程序了:
[xiaowp@gary code]$ ld -s -o hello hello.o
3.调试器
有人说程序不是编出来而是调出来的,足见调试在软件开发中的重要作用,在用汇编语言编写程序时尤其如此。Linux 下调试汇编代码既可以用 GDB、DDD 这类通用的调试器,也可以使用专门用来调试汇编代码的 ALD(Assembly Language Debugger)。
从调试的角度来看,使用 GAS 的好处是可以在生成的目标代码中包含符号表(symbol table),这样就可以使用 GDB 和 DDD 来进行源码级的调试了。要在生成的可执行程序中包含符号表,可以采用下面的方式进行编译和链接:
[xiaowp@gary code]$ as --gstabs -o hello.o hello.s
[xiaowp@gary code]$ ld -o hello hello.o
执行 as 命令时带上参数 --gstabs 可以告诉汇编器在生成的目标代码中加上符号表,同时需要注意的是,在用 ld 命令进行链接时不要加上 -s 参数,否则目标代码中的符号表在链接时将被删去。
汇编程序员通常面对的都是一些比较苛刻的软硬件环境,短小精悍的ALD可能更能符合实际的需要,因此下面主要介绍一下如何用ALD来调试汇编程序。首先在命令行方式下执行ald命令来启动调试器,该命令的参数是将要被调试的可执行程序:
[xiaowp@gary doc]$ ald hello
Assembly Language Debugger 0.1.3
Copyright (C) 2000-2002 Patrick Alken
hell ELF Intel 80386 (32 bit), LSB, Executable, Version 1 (current)
Loading debugging symbols...(15 symbols loaded)
ald>
当 ALD 的提示符出现之后,用 disassemble 命令对代码段进行反汇编:
ald> disassemble -s .text
Disassembling section .text (0x08048074 - 0x08048096)
08048074 BA0F000000 mov edx, 0xf
08048079 B998900408 mov ecx, 0x8049098
0804807E BB01000000 mov ebx, 0x1
08048083 B804000000 mov eax, 0x4
08048088 CD80 int 0x80
0804808A BB00000000 mov ebx, 0x0
0804808F B801000000 mov eax, 0x1
08048094 CD80 int 0x80
上述输出信息的第一列是指令对应的地址码,利用它可以设置在程序执行时的断点:
ald> break 0x08048088
Breakpoint 1 set for 0x08048088
断点设置好后,使用 run 命令开始执行程序。ALD 在遇到断点时将自动暂停程序的运行,同时会显示所有寄存器的当前值:
ald> run
Starting program: hello
Breakpoint 1 encountered at 0x08048088
eax = 0x00000004 ebx = 0x00000001 ecx = 0x08049098 edx = 0x0000000F
esp = 0xBFFFF6C0 ebp = 0x00000000 esi = 0x00000000 edi = 0x00000000
ds = 0x0000002B es = 0x0000002B fs = 0x00000000 gs = 0x00000000
ss = 0x0000002B cs = 0x00000023 eip = 0x08048088 eflags = 0x00000246
Flags: PF ZF IF
08048088 CD80 int 0x80
如果需要对汇编代码进行单步调试,可以使用 next 命令:
ald> next
Hello, world!
eax = 0x0000000F ebx = 0x00000000 ecx = 0x08049098 edx = 0x0000000F
esp = 0xBFFFF6C0 ebp = 0x00000000 esi = 0x00000000 edi = 0x00000000
ds = 0x0000002B es = 0x0000002B fs = 0x00000000 gs = 0x00000000
ss = 0x0000002B cs = 0x00000023 eip = 0x0804808F eflags = 0x00000346
Flags: PF ZF TF IF
0804808F B801000000 mov eax, 0x1
若想获得 ALD 支持的所有调试命令的详细列表,可以使用 help 命令:
ald> help
Commands may be abbreviated.
If a blank command is entered, the last command is repeated.
Type `help <command>&#39; for more specific information on <command>.
General commands
attach clear continue detach disassemble
enter examine file help load
next quit register run set
step unload window write
Breakpoint related commands
break delete disable enable ignore
lbreak tbreak
四、系统调用
即便是最简单的汇编程序,也难免要用到诸如输入、输出以及退出等操作,而要进行这些操作则需要调用操作系统所提供的服务,也就是系统调用。除非你的程序只完成加减乘除等数学运算,否则将很难避免使用系统调用,事实上除了系统调用不同之外,各种操作系统的汇编编程往往都是很类似的。
在 Linux 平台下有两种方式来使用系统调用:利用封装后的 C 库(libc)或者通过汇编直接调用。其中通过汇编语言来直接调用系统调用,是最高效地使用 Linux 内核服务的方法,因为最终生成的程序不需要与任何库进行链接,而是直接和内核通信。
和 DOS 一样,Linux 下的系统调用也是通过中断(int 0x80)来实现的。在执行 int 80 指令时,寄存器 eax 中存放的是系统调用的功能号,而传给系统调用的参数则必须按顺序放到寄存器 ebx,ecx,edx,esi,edi 中,当系统调用完成之后,返回值可以在寄存器 eax 中获得。
所有的系统调用功能号都可以在文件 /usr/include/bits/syscall.h 中找到,为了便于使用,它们是用 SYS_<name> 这样的宏来定义的,如 SYS_write、SYS_exit 等。例如,经常用到的 write 函数是如下定义的:
ssize_t write(int fd, const void *buf, size_t count);
该函数的功能最终是通过 SYS_write 这一系统调用来实现的。根据上面的约定,参数 fb、buf 和 count 分别存在寄存器 ebx、ecx 和 edx 中,而系统调用号 SYS_write 则放在寄存器 eax 中,当 int 0x80 指令执行完毕后,返回值可以从寄存器 eax 中获得。
或许你已经发现,在进行系统调用时至多只有 5 个寄存器能够用来保存参数,难道所有系统调用的参数个数都不超过 5 吗?当然不是,例如 mmap 函数就有 6 个参数,这些参数最后都需要传递给系统调用 SYS_mmap:
void * mmap(void *start, size_t length, int prot , int flags, int fd, off_t offset);c
当一个系统调用所需的参数个数大于 5 时,执行int 0x80 指令时仍需将系统调用功能号保存在寄存器 eax 中,所不同的只是全部参数应该依次放在一块连续的内存区域里,同时在寄存器 ebx 中保存指向该内存区域的指针。系统调用完成之后,返回值仍将保存在寄存器 eax 中。
由于只是需要一块连续的内存区域来保存系统调用的参数,因此完全可以像普通的函数调用一样使用栈(stack)来传递系统调用所需的参数。但要注意一点, Linux 采用的是 C 语言的调用模式,这就意味着所有参数必须以相反的顺序进栈,即最后一个参数先入栈,而第一个参数则最后入栈。如果采用栈来传递系统调用所需的参数,在执行 int 0x80 指令时还应该将栈指针的当前值复制到寄存器 ebx中。
五、命令行参数
在 Linux 操作系统中,当一个可执行程序通过命令行启动时,其所需的参数将被保存到栈中:首先是 argc,然后是指向各个命令行参数的指针数组 argv,最后是指向环境变量的指针数据 envp。在编写汇编语言程序时,很多时候需要对这些参数进行处理,下面的代码示范了如何在汇编代码中进行命令行参数的处理:
例3. 处理命令行参数
# args.s
.text
.globl _start
_start:
popl %ecx # argc
vnext:
popl %ecx # argv
test %ecx, %ecx # 空指针表明结束
jz exit
movl %ecx, %ebx
xorl %edx, %edx
strlen:
movb (%ebx), %al
inc %edx
inc %ebx
test %al, %al
jnz strlen
movb $10, -1(%ebx)
movl $4, %eax # 系统调用号(sys_write)
movl $1, %ebx # 文件描述符(stdout)
int $0x80
jmp vnext
exit: movl $1,%eax # 系统调用号(sys_exit)
xorl %ebx, %ebx # 退出代码
int $0x80
ret
六、GCC 内联汇编
用汇编编写的程序虽然运行速度快,但开发速度非常慢,效率也很低。如果只是想对关键代码段进行优化,或许更好的办法是将汇编指令嵌入到 C 语言程序中,从而充分利用高级语言和汇编语言各自的特点。但一般来讲,在 C 代码中嵌入汇编语句要比\"纯粹\"的汇编语言代码复杂得多,因为需要解决如何分配寄存器,以及如何与C代码中的变量相结合等问题。
GCC 提供了很好的内联汇编支持,最基本的格式是:
__asm__(\"asm statements\");
例如:
__asm__(\"nop\");
如果需要同时执行多条汇编语句,则应该用\"\\\\n\\\\t\"将各个语句分隔开,例如:
__asm__( \"pushl %%eax \\\\n\\\\t\"
\"movl $0, %%eax \\\\n\\\\t\"
\"popl %eax\");
通常嵌入到 C 代码中的汇编语句很难做到与其它部分没有任何关系,因此更多时候需要用到完整的内联汇编格式:
__asm__(\"asm statements\" : outputs : inputs : registers-modified);
插入到 C 代码中的汇编语句是以\":\"分隔的四个部分,其中第一部分就是汇编代码本身,通常称为指令部,其格式和在汇编语言中使用的格式基本相同。指令部分是必须的,而其它部分则可以根据实际情况而省略。
在将汇编语句嵌入到C代码中时,操作数如何与C代码中的变量相结合是个很大的问题。GCC采用如下方法来解决这个问题:程序员提供具体的指令,而对寄存器的使用则只需给出\"样板\"和约束条件就可以了,具体如何将寄存器与变量结合起来完全由GCC和GAS来负责。
在GCC 内联汇编语句的指令部中,加上前缀&#39;%&#39;的数字(如%0,%1)表示的就是需要使用寄存器的\"样板\"操作数。指令部中使用了几个样板操作数,就表明有几个变量需要与寄存器相结合,这样GCC和GAS在编译和汇编时会根据后面给定的约束条件进行恰当的处理。由于样板操作数也使用&#39; %&#39;作为前缀,因此在涉及到具体的寄存器时,寄存器名前面应该加上两个&#39;%&#39;,以免产生混淆。
紧跟在指令部后面的是输出部,是规定输出变量如何与样板操作数进行结合的条件,每个条件称为一个\"约束\",必要时可以包含多个约束,相互之间用逗号分隔开就可以了。每个输出约束都以&#39;=&#39;号开始,然后紧跟一个对操作数类型进行说明的字后,最后是如何与变量相结合的约束。凡是与输出部中说明的操作数相结合的寄存器或操作数本身,在执行完嵌入的汇编代码后均不保留执行之前的内容,这是GCC在调度寄存器时所使用的依据。
输出部后面是输入部,输入约束的格式和输出约束相似,但不带&#39;=&#39;号。如果一个输入约束要求使用寄存器,则GCC在预处理时就会为之分配一个寄存器,并插入必要的指令将操作数装入该寄存器。与输入部中说明的操作数结合的寄存器或操作数本身,在执行完嵌入的汇编代码后也不保留执行之前的内容。
有时在进行某些操作时,除了要用到进行数据输入和输出的寄存器外,还要使用多个寄存器来保存中间计算结果,这样就难免会破坏原有寄存器的内容。在GCC内联汇编格式中的最后一个部分中,可以对将产生副作用的寄存器进行说明,以便GCC能够采用相应的措施。
下面是一个内联汇编的简单例子:
例4.内联汇编
/* inline.c */
int main()
{
int a = 10, b = 0;
__asm__ __volatile__(\"movl %1, %%eax;\\\\n\\\\r\"
\"movl %%eax, %0;\"
:\"=r\"(b) /* 输出 */
:\"r\"(a) /* 输入 */
:\"%eax\"); /* 不受影响的寄存器 */
printf(\"Result: %d, %d\\\\n\", a, b);
}
上面的程序完成将变量a的值赋予变量b,有几点需要说明:
变量b是输出操作数,通过%0来引用,而变量a是输入操作数,通过%1来引用。
输入操作数和输出操作数都使用r进行约束,表示将变量a和变量b存储在寄存器中。输入约束和输出约束的不同点在于输出约束多一个约束修饰符&#39;=&#39;。
在内联汇编语句中使用寄存器eax时,寄存器名前应该加两个&#39;%&#39;,即%%eax。内联汇编中使用%0、%1等来标识变量,任何只带一个&#39;%&#39;的标识符都看成是操作数,而不是寄存器。
内联汇编语句的最后一个部分告诉GCC它将改变寄存器eax中的值,GCC在处理时不应使用该寄存器来存储任何其它的值。
由于变量b被指定成输出操作数,当内联汇编语句执行完毕后,它所保存的值将被更新。
在内联汇编中用到的操作数从输出部的第一个约束开始编号,序号从0开始,每个约束记数一次,指令部要引用这些操作数时,只需在序号前加上&#39;%&#39;作为前缀就可以了。需要注意的是,内联汇编语句的指令部在引用一个操作数时总是将其作为32位的长字使用,但实际情况可能需要的是字或字节,因此应该在约束中指明正确的限定符:
限定符 意义
\"m\"、\"v\"、\"o\" 内存单元
\"r\" 任何寄存器
\"q\" 寄存器eax、ebx、ecx、edx之一
\"i\"、\"h\" 直接操作数
\"E\"和\"F\" 浮点数
\"g\" 任意
\"a\"、\"b\"、\"c\"、\"d\" 分别表示寄存器eax、ebx、ecx和edx
\"S\"和\"D\" 寄存器esi、edi
\"I\" 常数(0至31)
表1 指令符号说明
符号--- 说明
r8--任意一个8位通用寄存器AH/AL/BH/BL/CH/CL/DH/DL
r16--任意一个16位通用寄存器AX/BX/CX/DX/SI/DI/BP/SP
r32--任意一个32位通用寄存器EAX/EBX/ECX/EDX/ESI/EDI/EBP/ESP
reg--代表r8/r16/r32
seg--段寄存器CS/DS/ES/SS和FS/GS
m8--一个8位存储器操作数单元
m16--一个16位存储器操作数单元
m32--一个32位存储器操作数单元
mem--代表m8/m16/m32
i8--一个8位立即数
i16--一个16位立即数
i32--一个32位立即数
imm--代表i8/i16/i32
dest--目的操作数
src--源操作数
label--标号
m64--一个64位存储器操作数单元
表2 IA-32常用指令的汇编格式
指令类型--指令汇编格式
传送指令:
MOVimm, reg/mem
MOV reg , reg/mem/seg
MOV mem, reg/seg
MOV seg, reg/mem
CMOVxx r16/m16, r16
CMOVxx r32/m32, r32
交换指令:
XCHG reg, reg/mem
XCHG reg/mem, reg
BSWAP r32 字节交换
XADD reg, reg/mem
CMPXCHG reg/mem,reg
CMPXCHG8B m64
堆栈指令(只支持16、32位数据):
PUSH reg/mem/seg
PUSH imm
POP reg/seg/mem
PUSHA (保护所有r16)
POPA (恢复所有r16)
PUSHAL (保护所有r32)
POPAL (恢复所有r32)
PUSHFL (EFLAGS入栈)
POPFL (EFLAGS出栈)
地址传送:
LEA mem, r16/r32
加法运算:
ADD imm/reg/mem, reg
ADD imm/reg, mem
ADC imm/reg/mem, reg
ADC imm/reg, mem
INC reg/mem
减法运算:
SUB imm/reg/mem, reg
SUB imm/reg, mem
SBB imm/reg/mem, reg
SBB imm/reg, mem
DEC reg/mem
NEG reg/mem
CMP imm/reg/mem, reg
CMP imm/reg, mem
乘法运算:
MUL reg/mem
IMUL reg/mem
IMUL r16,r16/m16/i8/i16
IMUL r16,r/m16,i8/i16
IMUL r32,r32/m32/i8/i32
IMUL r32,r32/m32,i8/i32
除法运算:
DIV reg/mem
IDIV reg/mem
符号扩展:
CLTD(把EAX符号扩展为EDX.EAX)
MOVSX r8/m8, r16
MOVSX r8/m8/r16/m16, r32
MOVZX r8/m8/r16/m16, r32
MOVZX r32,r8/m8/r16/m16
十进制调整:
DAA (将AL中的加和调整为压缩BCD码)
DAS (将AL中的减差调整为压缩BCD码)
AAA (将AL中的加和调整为非压缩BCD码)
AAS (将AL中的减差调整为非压缩BCD码)
AAM (将AX中的乘积调整为非压缩BCD码)
AAD (将AX中的非压缩BCD码扩展成二进制数)
逻辑运算:
AND imm/reg/mem, reg
AND imm/reg, mem
OR imm/reg/mem, reg
OR imm/reg, mem
XOR imm/reg/mem, reg
XOR imm/reg, mem
TEST imm/reg/mem, reg
TEST imm/reg, mem
NOT reg/mem
移位:
SAL 1/%cl/i8, reg/mem
SAR 1/%cl/i8, reg/mem
SHL 1/%cl/i8, reg/mem
SHR 1/%cl/i8, reg/mem
循环移位:
ROL 1/%cl/i8, reg/mem
ROR 1/%cl/i8, reg/mem
RCL 1/%cl/i8, reg/mem
RCR 1/%cl/i8, reg/mem
串操作:
MOVS[B/W/L]
LODS[B/W/L]
STOS[B/W/L]
CMPS[B/W/L]
SCAS[B/W/L]
REP
REPZ / REPE
REPNZ / REPNE
转移:
JMP label
JMP r16/r32/m16
Jxx label
循环:
JCXZ label
JECXZ label
LOOP label
LOOPZ / LOOPE label
LOOPNZ / LOOPNE label
子程序:
CALL label
CALL r16/m16
RET
RET i16
中断:
INT i8
IRET
INTO
高级语言支持:
ENTER i16,i8
LEAVE
处理器控制:
CLC
STC
CMC
CLD
STD
NOP
CPUID
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|网上读书园地

GMT+8, 2024-11-18 17:36 , Processed in 0.140752 second(s), 18 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表