|
发表于 2008-4-15 12:48:57
|
显示全部楼层
1921年4月15日,加拿大医师班廷与贝斯特一同发现了胰岛素。
胰岛素
【胰岛素的结构】
不同种族动物(人、牛、羊、猪等)的胰岛素功能大体相同,成分稍有差异。图中为人胰岛素化学结构。
胰岛素由A、B两个肽链组成。人胰岛素(Insulin Human)A链有11种21个氨基酸,B链有15种30个氨基酸,共16种51个氨基酸组成。其中A7(Cys)-B7(Cys)、A20(Cys)-B19(Cys)四个半胱氨酸中的巯基形成两个二硫键,使A、B两链连接起来。此外A链中A6(Cys)与A11(Cys)之间也存在一个二硫键。
【胰岛素的性质】
〖化学本质〗蛋白质
〖分子式〗C257 H383 N65 O77 S6
〖分子量〗5807.69
〖性状〗白色或类白色的结晶粉末
〖熔点〗233℃(分解)
〖比旋度〗-64°±8°(C=2,0.003mol/L NaOH)
〖溶解性〗在水、乙醇、氯仿或乙醚中几乎不溶;在矿酸(无机酸)或氢氧化碱溶液中易溶
〖酸碱性〗两性,等电点pI5.35-5.45
【胰岛素的来源】
胰岛素是一种蛋白质类激素,体内胰岛素是由胰岛β细胞分泌的。在人体十二指肠旁边,有一条长形的器官,叫做胰腺。在胰腺中散布着许许多多的细胞群,叫做胰岛。胰岛素是由胰岛β细胞受内源性或外源性物质如葡萄糖、乳糖、核糖、精氨酸、胰高血糖素等的激动而分泌的一种蛋白质激素。
胰岛素合成的控制基因在第11对染色体短臂上。基因正常则生成的胰岛素结构是正常的;若基因突变则生成的胰岛素结构是不正常的,为变异胰岛素。在β细胞的细胞核中,第11对染色体短臂上胰岛素基因区DNA向mRNA转录,mRNA从细胞核移向细胞浆的内质网,转译成由105个氨基酸残基构成的前胰岛素原。前胰岛素原经过蛋白水解作用除其前肽,生成86个氨基酸组成的长肽链——胰岛素原(Proinsulin)。胰岛素原随细胞浆中的微泡进入高尔基体,经蛋白水解酶的作用,切去31、32、60三个精氨酸连接的链,断链生成没有作用的C肽,同时生成胰岛素,分泌到B细胞外,进入血液循环中。未经过蛋白酶水解的胰岛素原,一小部分随着胰岛素进入血液循环,胰岛素原的生物活性仅有胰岛素的5%。
胰岛素半衰期为5-15分钟。在肝脏,先将胰岛素分子中的二硫键还原,产生游离的AB链,再在胰岛素酶作用下水解成为氨基酸而灭活。
胰岛β细胞中储备胰岛素约200U,每天分泌约40U。空腹时,血浆胰岛素浓度是5~15μU/mL。进餐后血浆胰岛素水平可增加5~10倍。体内胰岛素的生物合成速度主要受以下因素影响:
(一)血浆葡萄糖浓度是影响胰岛素分泌的最重要因素。口服或静脉注射葡萄糖后,胰岛素释放呈两相反应。早期快速相,门静脉血浆中胰岛素在2分钟内即达到最高值,随即迅速下降;延迟缓慢相,10分钟后血浆胰岛素水平又逐渐上升,一直延续1小时以上。早期快速相显示葡萄糖促使储存的胰岛素释放,延迟缓慢相显示胰岛素的合成和胰岛素原转变的胰岛素。
(二)进食含蛋白质较多的食物后,血液中氨基酸浓度升高,胰岛素分泌也增加。精氨酸、赖氨酸、亮氨酸和苯丙氨酸均有较强的刺激胰岛素分泌的作用。
(三)进餐后胃肠道激素增加,可促进胰岛素分泌如胃泌素、胰泌素、胃抑肽、肠血管活性肽都刺激胰岛素分泌。
(四)自由神经功能状态可影响胰岛素分泌。迷走神经兴奋时促进胰岛素分泌;交感神经兴奋时则抑制胰岛素分泌。
胰岛素是与C肽以相等分子分泌进入血液的。临床上使用胰岛素治疗的病人,血清中存在胰岛素抗体,影响放射免疫方法测定血胰岛素水平,在这种情况下可通过测定血浆C肽水平,来了解内源性胰岛素分泌状态。
【胰岛素的作用】
〖药理作用〗
治疗糖尿病、消耗性疾病。
〖生理作用〗
胰岛素是机体内唯一降低血糖的激素,也是唯一同时促进糖原、脂肪、蛋白质合成的激素。作用机理属于受体酪氨酸激酶机制。
(一)调节糖代谢
胰岛素能促进全身组织对葡萄糖的摄取和利用,并抑制糖原的分解和糖原异生,因此,胰岛素有降低血糖的作用。胰岛素分泌过多时,血糖下降迅速,脑组织受影响最大,可出现惊厥、昏迷,甚至引起胰岛素休克。相反,胰岛素分泌不足或胰岛素受体缺乏常导致血糖升高;若超过肾糖阈,则糖从尿中排出,引起糖尿;同时由于血液成份中改变(含有过量的葡萄糖), 亦导致高血压、冠心病和视网膜血管病等病变。胰岛素降血糖是多方面作用的结果:
(1)促进肌肉、脂肪组织等处的靶细胞细胞膜载体将血液中的葡萄糖转运入细胞。
(2)通过共价修饰增强磷酸二酯酶活性、降低cAMP水平、升高cGMP浓度,从而使糖原合成酶活性增加、磷酸化酶活性降低,加速糖原合成、抑制糖原分解。
(3)通过激活丙酮酸脱氢酶磷酸酶而使丙酮酸脱氢酶激活,加速丙酮酸氧化为乙酰辅酶A,加快糖的有氧氧化。
(4)通过抑制PEP羧激酶的合成以及减少糖异生的原料,抑制糖异生。
(5)抑制脂肪组织内的激素敏感性脂肪酶,减缓脂肪动员,使组织利用葡萄糖增加。
(二)调节脂肪代谢
胰岛素能促进脂肪的合成与贮存,使血中游离脂肪酸减少,同时抑制脂肪的分解氧化。胰岛素缺乏可造成脂肪代谢紊乱,脂肪贮存减少,分解加强,血脂升高,久之可引起动脉硬化,进而导致心脑血管的严重疾患;与此同时,由于脂肪分解加强,生成大量酮体,出现酮症酸中毒。
(三)调节蛋白质代谢
胰岛素一方面促进细胞对氨基酸的摄取和蛋白质的合成,一方面抑制蛋白质的分解,因而有利于生长。腺垂体生长激素的促蛋白质合成作用,必须有胰岛素的存在才能表现出来。因此,对于生长来说,胰岛素也是不可缺少的激素之一。
(四)其它功能
胰岛素可促进钾离子和镁离子穿过细胞膜进入细胞内;可促进脱氧核糖核酸(DNA)、核糖核酸(RNA)及三磷酸腺苷(ATP)的合成。
【影响胰岛素分泌的因素】
体内胰岛素的分泌主要受以下因素影响:
(1)血糖浓度是影响胰岛素分泌的最重要因素。口服或静脉注射葡萄糖后,胰岛素释放呈两相反应。早期快速相,门静脉血浆中胰岛素在2分钟内即达到最高值,随即迅速下降;延迟缓慢相,10分钟后血浆胰岛素水平又逐渐上升,一直延续1小时以上。早期快速相显示葡萄糖促使储存的胰岛素释放,延迟缓慢相显示胰岛素的合成和胰岛素原转变的胰岛素。
(2)进食含蛋白质较多的食物后,血液中氨基酸浓度升高,胰岛素分泌也增加。精氨酸、赖氨酸、亮氨酸和苯丙氨酸均有较强的刺激胰岛素分泌的作用。
(3)进餐后胃肠道激素增加,可促进胰岛素分泌如胃泌素、胰泌素、胃抑肽、肠血管活性肽都刺激胰岛素分泌。
(4)自由神经功能状态可影响胰岛素分泌。迷走神经兴奋时促进胰岛素分泌;交感神经兴奋时则抑制胰岛素分泌。
【胰岛素的发现】
胰岛素于1921年由加拿大人F.G.班廷和C.H.贝斯特首先发现。1922年开始用于临床,使过去不治的糖尿病患者得到挽救。至今用于临床的胰岛素几乎都是从猪、牛胰脏中提取的。不同动物的胰岛素组成均有所差异,猪的与人的胰岛素结构最为相似,只有B链羧基端的一个氨基酸不同。80年代初已成功地运用遗传工程技术由微生物大量生产人的胰岛素,并已用于临床。
1955年英国F.桑格小组测定了牛胰岛素的全部氨基酸序列,开辟了人类认识蛋白质分子化学结构的道路。1965年9月17日,中国科学家人工合成了具有全部生物活力的结晶牛胰岛素,它是第一个在实验室中用人工方法合成的蛋白质。稍后美国和联邦德国的科学家也完成了类似的工作。70年代初期,英国和中国的科学家又成功地用X射线衍射方法测定了猪胰岛素的立体结构。这些工作为深入研究胰岛素分子结构与功能关系奠定了基础。人们用化学全合成和半合成方法制备类似物,研究其结构改变对生物功能的影响;进行不同种属胰岛素的比较研究;研究异常胰岛素分子病,即由于胰岛素基因的突变使胰岛素分子中个别氨基酸改变而产生的一种分子病。这些研究对于阐明某些糖尿病的病因也具有重要的实际意义。
胰岛细胞根据其分泌激素的功能分为以下几种:
①B细胞(β细胞),约占胰岛细胞的60%~80%,分泌胰岛素,胰岛素可以降低血糖。
②A细胞(α细胞),约占胰岛细胞的24%~40%,分泌胰升糖素,胰升糖素作用同胰岛素相反,可增高血糖。
③D细胞,约占胰岛细胞总数的6%~15%,分泌生长激素抑制激素。
糖尿病患者,由于病毒感染、自身免疫、遗传基因等各种发病因素,其病理生理主要是由于胰岛素活性相对或绝对不足以及胰升糖素活性相对或绝对过多所致,也即B和A细胞双边激素功能障碍所致。胰岛素依赖型糖尿病胰岛素分泌细胞严重损害或完全缺如,内源性胰岛素分泌极低,需用外源性胰岛素治疗。非胰岛素依赖型糖尿病,胰岛素分泌障碍较轻,基础胰岛素浓度正常或增高,而糖刺激后胰岛素分泌则一般均较相应体重为低,即胰岛素相对不足。
【胰岛素的分泌】
胰岛素在胰岛B细胞中合成。胰岛素合成的控制基因在第11对染色体短臂上。基因正常则生成的胰岛素结构是正常的;若基因突变则生成的胰岛素结构是不正常的,为变异胰岛素。在 B细胞的细胞核中,第11对染色体短臂上胰岛素基因区DNA向mRNA转录,mRNA从细胞核移向细胞浆的内质网,转译成氨基酸相连的长肽——前胰岛素原,前胰岛素原经过蛋白水解作用除其前肽,生成胰岛素原。胰岛素原随细胞浆中的微泡进入高尔基体,由86个氨基酸组成的长肽链 ——胰岛素原在高尔基体中经蛋白酶水解生成胰岛素及C肽,分泌到B细胞外,进入血液循环中。未经过蛋白酶水解的胰岛素原,一小部分随着胰岛素进入血液循环,胰岛素原的生物活性仅及胰岛素的5%。
胰岛素的分子量5700,由两条氨基酸肽链组成。A链有21个氨基酸,B链有30个氨基酸。A-B 链之间有两处二硫键相连。胰岛B细胞中储备胰岛素约200U,每天分泌约40U。空腹时,血浆胰岛素浓度是5~15μU/mL。进餐后血浆胰岛素水平可增加5~10倍。胰岛素的生物合成速度受血浆葡萄糖浓度的影响,当血糖浓度升高时,B细胞中胰岛素原含量增加,胰岛素合成加速。
胰岛素是与C肽以相等分子分泌进入血液的。临床上使用胰岛素治疗的病人,血清中存在胰岛素抗体,影响放射免疫方法测定血胰岛素水平,在这种情况下可通过测定血浆C肽水平,来了解内源性胰岛素分泌状态。
【体内对抗胰岛素的激素】
体内对抗胰岛素的激素主要有胰升糖素、肾上腺素及去甲肾上腺素、肾上腺皮质激素、生长激素等。它们都能使血糖升高。
(1)胰升糖素。由胰岛α细胞分泌,在调节血糖浓度中对抗胰岛素。胰升糖素的主要作用是迅速使肝脏中的糖元分解,促进肝脏葡萄糖的产生与输出,
进入血液循环,以提高血糖水平。胰升糖素还能加强肝细胞摄入氨基酸,及因能促进肝外组织中的脂解作用,增加甘油输入肝脏,提供了大量的糖异生原料而加强糖异生作用。胰升糖素与胰岛素共同协调血糖水平的动态平衡。
进食碳水化合物时,产生大量葡萄糖,从而刺激胰岛素的分泌,同时胰升糖素的分泌受到抑制,胰岛素/胰升糖素比值明显上升,此时肝脏从生成葡萄糖为主的组织转变为将葡萄糖转化为糖元而贮存糖元的器官。
饥饿时,血液中胰升糖素水平显著上升而胰岛素水平下降。糖异生及糖元分解加快,肝脏不断地将葡萄糖输送到血液中。同时由于胰岛素水平降低,肌肉和脂肪组织利用葡萄糖的能力降低,主要是利用脂肪酸,从而节省了葡萄糖以保证大脑等组织有足够的葡萄糖供应。
(2)肾上腺素及去甲肾上腺素。肾上腺素是肾上腺髓质分泌的,去甲肾上腺素是交感神经末梢的分泌物。当精神紧张或寒冷刺激使交感神经处在兴奋状态,肾上腺素及去甲肾上腺素分泌增多,使肝糖元分解输出增多,阻碍葡萄糖进入肌肉及脂肪组织细胞,使血糖升高。
(3)生长激素及生长激素抑制激素。
①生长激素。由脑垂体前叶分泌,它能促进人的生长,且能调节体内的物质代谢。生长激素主要通过抑制肌肉及脂肪组织利用葡萄糖,同时促进肝脏中的糖异生作用及糖元分解,从而使血糖升高。生长激素可促进脂肪分解,使血浆游离脂肪酸升高。饥饿时胰岛素分泌减少,生长激素分泌增高,于是血中葡萄糖利用减少及脂肪利用增高,此时血浆中葡萄糖及游离脂肪酸含量上升。
②生长激素抑制激素。由胰岛D细胞分泌。生长激素释放抑制激素不仅抑制垂体生长激素的分泌,而且在生理情况下有抑制胰岛素及胰升糖素分泌作用。但生长激素释放抑制激素本身对肝葡萄糖的产生或循环中葡萄糖的利用均无直接作用。
(4)肾上腺糖皮质激素。肾上腺糖皮质激素是由肾上腺皮质分泌的(主要为皮质醇,即氢化可的松),能促进肝外组织蛋白质分解,使氨基酸进入肝脏增多,又能诱导糖异生有关的各种关键酶的合成,因此促进糖异生,使血糖升高。
【胰岛素受体】
胰岛素在细胞水平的生物作用是通过与靶细胞膜上的特异受体结合而启动的。胰岛素受体为胰岛素起作用的靶细胞膜上特定部位,仅可与胰岛素或含有胰岛素分子的胰岛素原结合,具有高度的特异性,且分布非常广泛。受体是一种糖蛋白,每个受体由α、β各两个亚单位组成。α亚单位穿过细胞膜,一端暴露在细胞膜表面,具有胰岛素结合位点。β亚单位由细胞膜向胞浆延伸,是胰岛素引发细胞膜与细胞内效应的功能单位。胰岛素与亚单位结合后,β 亚单位中酪氨酸激酶被激活,使受体磷酸化,产生介体,调节细胞内酶系统活性,控制物质代谢。
每种细胞与胰岛素结合的程度取决于受体数目与亲和力,此二者又受血浆胰岛素浓度调节。当胰岛素浓度增高时往往胰岛素受体数下降,称下降调节。如肥胖的非胰岛素依赖型糖尿病人由于脂肪细胞膜上受体数下降,临床上呈胰岛素不敏感性,称抵抗性。当肥胖的非胰岛素依赖型糖尿病患者经饮食控制、体育锻炼后体重减轻时,脂肪细胞膜上胰岛素受体数增多,与胰岛素结合力加强而使血糖利用改善。此不仅是肥胖的非胰岛素依赖型糖尿病的重要发病机制,也是治疗中必须减肥的理论依据。
【药物简介】
insulin 脊椎动物胰腺中兰氏岛(Yangerhans)的β细胞分泌的激素。1921年由F.G.Banting和C.H.Best所发现。insulin一名系由insula(岛)而来。胰岛素可用酸性乙醇从胰腺中提取。1926年J.J.Abel已分离出胰岛素结晶,结晶中含有微量锌。单体的分子量为5700,在中性溶液中可互相融合。F.Sanger就作为牛胰岛素的蛋白质曾首次确定了其氨基酸的排列顺序(1955)。胰岛素的结构是,通过S—S键在两处把A链(含有N末端以甘氨酸、C末端以天冬酰胺结束的21个氨基酸的残基)和B链(由N末端为苯丙氨酸和C末端为丙氨酸的30个氨基酸残基构成)连结起来的结构。在A链内含有一个二硫键(S—S)。牛、猪、羊、马、鲸等动物的胰岛素,链中特定部位的残基并不相同,有种属差异。胰岛素由于化学合成的成功结构已经清楚。单独的A链或B链并不具有活性,在—S—S—键正确地将两链连结后才产生活性。在β细胞中最先合成的称为胰岛素原(proinsulin),它是由86个氨基酸残基(是人的,而牛的为81个)组成的一条链的前身,在蛋白酶的作用下,去掉肽链的一部分便形成胰岛素分子而分泌到血液中。胰岛素的分泌受葡萄糖等的刺激。胰岛素对物质代谢的调节起着重要作用。对葡萄糖之进入组织细胞、氧化以及由糖转变成糖元和脂肪有促进作用,其结果可使血糖含量降低。此外,它还能使氨基酸进入细胞的速度加快,促进细胞内的蛋白质合成。据谓胰岛素的作用是通过与靶细胞表面的受体进行特异的结合而发生的。但具体的作用机制还不清楚。胰岛素可用于治疗糖尿病,为了延长胰岛素在体内的持续时间,可使用与鱼精蛋白结合的鱼精蛋白胰岛素,或复与氯化锌结合的鱼精蛋白-锌-胰岛素。
俗称:普通胰岛素;胰激素;因苏林;正规胰岛素 ,短效胰岛素,胰岛素
类 别:胰岛素及其他影响血糖药
简 介:
【药理作用】 促进血循环中葡萄糖进入肝细胞、肌细胞、脂肪细胞及其他组织细胞合成糖原使血糖降低,促进脂肪及蛋白质的合成。
【适应症】
主要用于糖尿病,特别是胰岛素依赖型糖尿病: 1.重型、消瘦、营养不良者; 2.轻、中型经饮食和口服降血糖药治疗无效者; 3.合并严重代谢紊乱(如酮症酸中毒、高渗性昏迷或乳酸酸中毒)、重度感染、消耗性疾病(如肺结核、肝硬变)和进行性视网膜、肾、神经等病变以及急性心肌梗塞、脑血管意外者; 4.合并妊娠、分娩及大手术者。也可用于纠正细胞内缺钾。
【用量用法】
一般为皮下注射,1日3~4次。早餐前的1次用量最多。午餐前次之,晚餐前又次之,夜宵前用量最少。有时肌注。静注只有在急症时(如糖尿病性昏迷)才用。因病人的胰岛素需要量受饮食热量和成分、病情轻重和稳定性、体型胖瘦、体力活动强度、胰岛素抗体和受体的数目和亲和力等因素影响,使用剂量应个体化。可按病人尿糖多少确定剂量,一般24小时尿中每2~4g糖需注射1个单位。中型糖尿病人,每日需要量约为5~40单位,于每次餐前30分钟注射(以免给药后发生血糖过低症)。较重病人用量在40单位以上。对糖尿病性昏迷,用量在100单位左右,与葡萄糖(50~100g)一同静脉注射。此外,小量(5~10单位)尚可用于营养不良、消瘦、顽固性妊娠呕吐、肝硬变初期(同时注射葡萄糖)。
【注意事项】
1.胰岛素过量可使血糖过低。其症状视血糖降低的程度和速度而定,可出现饥饿感、精神不安、脉搏加快、瞳孔散大、焦虑、头晕、共济失调、震颤、昏迷,甚至惊厥。必须及时给予食用糖类。出现低血糖休克时,静注50%葡萄糖溶液50ml。必要时,再静滴5%葡萄糖液。注意必须将低血糖性昏迷与严重酮体血症相鉴别。有时在低血糖后可出现反跳性高血糖,即Somogyi反应。若睡前尿糖阴性,而次晨尿糖强阳性,参考使用胰岛素剂量,应想到夜间可能有低血糖症,此时应试行减少胰岛素剂量,切勿再加大胰岛素剂量。 2.为了防止血糖突然下降,来不及呼救而失去知觉,应给每一病人随身记有病情及用胰岛素情况的卡片,以便不失时机及时抢救处理。 3.注射部位可有皮肤发红、皮下结节和皮下脂肪萎缩等局部反应。故需经常更换注射部位。 4.少数可发生荨麻疹等,偶有过敏性休克(可用肾上腺素抢救)。 5.极少数病人可产生胰岛素耐受性:即在没有酮症酸中毒的情况下,每日胰岛素需用量高于200单位。其主要原因可能为感染、使用皮质激素或体内存在有胰岛素抗体,能和胰岛素结合。此时可更换用不同动物种属的制剂或加服口服降血糖药。 6.低血糖、肝硬变、溶血性黄疸、胰腺炎、肾炎等病人忌用。 7.注射液中多含有防腐剂,一般不宜用于静注。静注宜用针剂安瓿胰岛素制剂。
胰岛素的主要生理作用是调节代谢过程。对糖代谢:促进组织细胞对葡萄糖的摄取和利用,促进糖原合成,抑制糖异生,使血糖降低;对脂肪代谢;促进脂肪酸合成和脂肪贮存,减少脂肪分解;对蛋白质;促进氨基酸进入细胞,促进蛋白质合成的各个环节以增加蛋白质合成。总的作用是促进合成代谢。
班廷(Banting,Sir Frederick Grant)
生理学家
班廷(Banting,Sir Frederick Grant)
加拿大生理学家。1891年11月14日生于安大略省阿利森;1941年2月21日卒于纽芬兰。
班廷在多伦多大学,开初学习作牧师的课程,以后转而学习医学。1916年他获得了医学学位后,在第一次世界大战后两年中,作为一名军医在海外服役。于康布雷受伤,1918年由于他在炮火中表现的英勇精神而荣获陆军十字勋章。
行医后不久,班廷对糖尿病发生了兴趣,糖尿病主要生化症状是出现高血糖,结果尿中出现葡萄糖。在那个时代,糖尿病意味着慢性死亡。
约在这三十年前,曾怀疑胰腺与此病有关系,因为切除实验动物的胰腺后,便产生类似糖尿病的情况。斯塔林和贝利斯提出激素的概念之后,推测胰腺产生一种激素,能控制人体内糖分子的代谢,是合乎逻辑的,此种激素分泌不足则造成糖的积聚而导致糖尿病。
当然胰腺的主要功能是分泌消化液。然而,胰腺内散布有许多细胞团(称为“兰格罕氏岛”,半个世纪前兰格罕氏首先给以描述的),这些细胞团与胰腺的其它部分不同,可能就是产生激素的地方。此种激素称胰岛素。
著名的肯达耳曾经成功地分离出一种激素---甲状腺素,于是许多人都想试图从胰腺中提取胰岛素。倘若能成功,那么提出的激素一定有助于糖尿病的患者,当连续治疗时,他们将可以痊愈。所有分离胰岛素的尝试都失败了。因为一将胰腺研碎,胰腺内的消化酶就将胰岛素分子(蛋白质)破坏。
1920年班廷看到一篇论文中记述如何结扎输送消化液至肠内的胰腺管时,就引起胰腺退化。这给了班廷以关键性的启发。兰格罕氏岛(胰岛)不参与分泌消化液,所以它不退化。假使除了胰岛外胰腺退化了,那么就除去了破坏胰岛素的消化酶,于是胰岛素仍将完整无损。
1921年他怀着这种想法到了多伦多大学,经过一番周折以后,他说服了生理学教授麦克劳德,答应给他几间实验室,并且委派一位合作者,就是贝斯特,以后,麦克劳德离开那里去渡暑假。
班廷和贝斯特结扎了几支狗的胰管,待七周后,这些狗的胰腺都萎缩了,并且失去了消化器官的功能,然而胰岛在外观上仍是完好的。他们从这些胰腺中分离出一种液体,给因切除胰腺而患糖尿病的狗。此提取物很快制止了糖尿病的症状。班廷和贝斯特称此激素为isletin,而麦克劳德主张用一有趣味的、比较古老的名称insulin(胰岛素)。
实验于1922年完成,1923年班廷和麦克劳德获得医学和生理学诺贝尔奖,这是加拿大人首次获得诺贝尔奖。自那时以后,许许多多的糖尿病患者便能够正常生活了,其中有伊斯特曼、迈诺特,还有英国的乔治五世和作家威尔斯。
班廷大发雷霆,因为奖金给了麦克劳德一份,而没给贝斯特,可是麦克劳德仅仅是提供给班廷实验室,而贝斯特和应该承受他劳动应得的一份。很不容易地劝服班廷接受了奖金,当他接受了奖金以后,分给贝斯特一半。
1923年加拿大议会通过授给班廷以年金,并给他建立班廷研究基金。在多伦多大学设立了班廷-贝斯特教授职位,1934年授予班廷爵士职位。
第二次世界大战爆发后,他又参加了战地医疗工作,为一名少校,在加拿大军队中服役,但此次很不幸。在纽芬兰上空因飞机失事而牺牲。
班廷是一位真正的勇士。 |
|