威康信托基金会病例控制协会(Wellcome Trust Case Control Consortium,简称WTCCC)是一个由50余家英国科研机构组成的团体。面对巨大的挑战,他们最终揭开了那些受到多种基因影响的疾病的神秘面纱。研究者对17,000名英国人体内的某些特定基因变异进行了扫描,并于2007年6月公布了研究结果。
1927年,查尔斯·A·林白(Charles A. Lindbergh)从纽约起飞,不着陆直抵巴黎的壮举,令当时的航空业界惊叹不已。林白冒此大险不光是为了寻求刺激,他还看中了奖金达25,000美元的奥泰格大奖(Orteig Prize)。今天,类似情节再度上演:已有12年历史的非营利机构艾克斯大奖基金会策划并组织了形形色色的科技擂台赛,吸引众多创新好手们积极参与。
事实验证了这一预见。基金会在1995年定下了一个目标:“开创个人航空业,让太空旅行成为人人都能享受的时尚消遣——不但安全可靠,而且花费低廉。”2004年,莫哈维航空航天冒险公司(Mojave Aerospace Ventures)率先制造出一架能够抵达低地轨道、返回地球,并在两周内再次飞入太空的太空飞机,勇夺安萨里艾克斯大奖(Ansari X Prize)。参与此项竞争的团队多达26个,花在研究开发上的费用总计超过一亿美元。
基金会在2006年底设立了第二项大奖,名为阿康艾克斯大奖(Archon X Prize),奖金高达1,000万美元。这项大奖将颁给第一个能在10天以内,用不到100万美元的费用,完成100个人类基因组序列分析的民间团队。至少4个团队报名参加了这场角逐,他们面临的艰巨任务是,发明一种能够正确测出每条基因组上98%的基因序列,且错误数不超过6万处的仪器。
获奖的技术可望大大加快某些新发现的推广应用,比如全基因组关联研究(Genome-Wide Association Study),这类研究通过分析大型患者群体,鉴别可能导致复杂遗传疾病的基因。阿康艾克斯大奖有一位声名显赫的支持者——著名理论物理学家霍金,他正在遭受肌萎缩性侧索硬化症(amyotrophic lateral sclerosis)的折磨。
2007年4月,艾克斯大奖基金会还设立了汽车艾克斯大奖(Automotive X Prize),征求第一种能够只花1加仑(约4.55升)汽油跑满100英里(约160千米)的量产型汽车。2007年9月,基金会又宣布推出奖金为3,000万美元的谷歌月球艾克斯大奖(Google Lunar X Prize),准备奖给第一个发射飞船降落月球的民间团队。可能有些人的确是冲着钱来的,但毫无疑问,艾克斯大奖基金会摆下的众多擂台,已经让全球无数创新者跃跃欲试。
对科学家而言,将药物释放至所需部位的难度有时候并不亚于新药研发。最典型的例子就是大脑,大脑血管壁坚实紧密,确保了绝大多数大分子不会从血液渗漏进大脑组织。因此,对于神经性疾病的治疗,在某些类型的药物给药时,血脑屏障是难以逾越的(参见《环球科学》2006年第11期《给大脑喂药》一文)。但是美国哈佛大学医学院免疫疾病研究所的曼朱纳特·N·斯瓦米(Manjunath N. Swamy)和他的研究小组独辟蹊径,设计出了巧妙的方法,能让药物穿过血脑屏障(blood-brain barrier),直接作用于脑细胞。
因此,当美国威斯康星大学麦迪逊分校的詹姆斯·A·迪梅希奇(James A. Dumesic)及其同事,发现了一种以糖为原料人工合成新燃料的简单方法时,科学界给予了极大关注。这种新燃料被称为2,5-二甲基呋喃(2,5-dimethylfuran,简称为DMF),多方面的性能超过了乙醇。DMF拥有与汽油相当的能量密度,不溶于水,而且化学性质稳定,适于储存。尽管化学家很久以前就了解这种化合物,然而批量生产这种化合物依旧十分困难。新的两步式生产工艺改进了一个中间制造环节,消除了障碍,为量产DMF铺平了道路。
美国布鲁克海文国家实验室的化学家拉多斯拉夫·R·阿季奇(Radoslav R. Adzic)带领他的研究小组,发现了一种防止电极表面铂微粒氧化的方法。电极的氧化不仅会减缓化学反应速度,降低输出功率,还会造成质子交换膜的降解,使燃料电池完全失效。阿季奇的研究小组在电极上喷涂一层金纳米微粒,让铂微粒层保留了绝大部分原有的催化能力,同时还具备了抗氧化能力。
2007年初,美国华盛顿州立大学的帕特里夏·A·亨特(Patricia A. Hunt)带领的一个研究小组发现,在雌性小鼠胚胎的形成过程中,少量双酚A就可以阻碍卵细胞的生长。接触双酚A之后,胚胎中40%左右的卵细胞染色体数目出现异常。这项令人震惊的发现说明,这种化学物质可以影响三代人:怀孕的准妈妈接触双酚A会损害女儿的生殖细胞,进而继续破坏第三代的发育。
有毒的居家常用物品还可能对环境造成危害,其中未使用过的药物威胁最大。消费者经常会将这些药物冲入下水道,将药物中包含的强效分子带入江河湖海。被丢弃的避孕药会引起鱼类的生殖问题,过量的抗生素则会助长耐药细菌的扩散。2007年,为了应对这些问题,美国药剂师协会(American Pharmacists Association)和美国鱼类及野生动物保护委员会(U.S. Fish and Wildlife Service)联合签署一项协议,启动了一项面对公众的、旨在改变公众消费习惯的运动。当病人得到处方的时候,会被告知,要通过危险废物回收程序来处理未使用的药物。如果当地没有启动这套程序,应将药物压碎并稀释,然后封入塑料袋中,丢到垃圾箱之中(一些麻醉品不建议如此处理,因为存在药物被吸毒者从垃圾箱中取回的风险)。
在仄升量级下量取液体就已如此困难,那么,在经典物理学理论不再适用的更小尺度下进行测量,又会如何呢?利用量子力学进行高精度测量的量子测量法(Quantum metrology)就是这样一种技术。利用这种技术,日本北海道大学(Hokkaido University)和英国布里斯托尔大学(University of Bristol)的物理学家把光子对距离的测量精度几乎提高了一倍。
这项实验还不足以说明抗感染基因可以在野外环境中广泛散播,但至少给人带来了希望:转基因蚊子有可能存活。然而,不到一个月之后,美国加州理工大学的生物学家布鲁斯·A·海(Bruce A. Hay)又找到了证据,证明突变基因确实能在昆虫种群中传播开来。布鲁斯的小组以果蝇为实验物种。他们将一段非编码RNA(即小分子RNA),与果蝇胚胎发育的关键基因连接在一起,又对这一基因进行改造,使它不受这段RNA的影响。接着,研究人员把这些经过改造的果蝇放入笼中,同时还放入了3倍数量的野生果蝇。随着种群的杂交融合,整合了小分子RNA的野生果蝇逐渐死去,因为小分子RNA会破坏它们未受保护的关键发育基因,而携带改造基因的果蝇却可以存活下来。9到11代后,笼子里的果蝇后代无一例外,全都携带了科学家改造过的基因。
不小心切破了手指,在我们去找创可贴之前,人体就开始修补伤口了。合成材料也可以拥有类似的自我修复能力,这多亏了美国伊利诺伊大学香槟分校的南希·R·索托斯(Nancy R. Sottos)、斯科特·R·怀特(Scott R. White)和他们的同事所作的努力。他们研制出一种自修复塑料,含有一个三维毛细管网络,管中充满有修复作用的化学药剂。当材料破损时,药剂就渗漏出来,在同时漏出的一种催化剂颗粒的作用下凝固。这个小组以前研制的自修复材料中,药剂被分开存储在一个个小隔间里,每个部位只能自行修复一次。改进后研制成功的新材料能对同一部位的小破损自行修复多达7次。
科学家们还试图模仿天然器官的另一个特点——自装配性。法国巴黎高等理工化工大学(City of Paris Industrial Physics and Chemistry Higher Education Institution)的伯努瓦·罗曼(Benot Roman)和若泽·比科(JoséBico),利用蒸发时水滴的表面张力,折叠出超小型的六面体、棱锥体和其他结构。他们用来折叠的“纸张”是从一种弹性聚合物上裁剪下来的,长宽约1毫米,厚仅为40微米到80微米。由于表面张力与尺寸成正比,在用更薄的聚合物自装配成微米或纳米尺度的物体这一方面,这种技术也许会非常有效。
近来,塑料和有机材料电子元器件越来越常见,但磁性材料并不多见。现在,加拿大英属哥伦比亚省xxx大学的罗宾·G·希克斯(Robin G. Hicks)和加拿大安大略省温莎大学(University of Windsor)的拉伊沙潘·然(Rajsapan Jain)及其合作者,制造出了一类新的磁体,由镍与多种有机化合物混合而成。这种黑色粉状物质在200℃时仍能保持磁性。研究人员的最终目标是制造出磁性有机化合物。这种材料能够轻而易举地制成薄膜,或者其他对电子工业有用的形状。
正常及病变脑组织中蛋白构成的差异,可能为脑疾诊断提供了一种新方法。美国西北太平洋国家实验室的理查德·D·史密斯(Richard D. Smith)和加利福尼亚大学洛杉矶分校的德斯蒙德·J·史密斯(Desmond J. Smith),共同构建了一套复杂的蛋白分析系统。这套系统将复杂的图像处理功能与一系列高科技设备结合在一起。通过分析两只正常小鼠脑中一毫米见方的组织块,研究人员最终确定了正常大脑组织中1,028种蛋白的含量。科学家将在未来的实验里,利用这种方法比较正常大脑组织与患神经退行性疾病的大脑有哪些不同。
更好的诊断方法是必需的,对阿尔茨海默病来说尤其如此。美国约翰·霍普金斯大学医学院的斯蒂娜·M·塔克(Stina M. Tucker)、埃斯特·奥(Esther Oh)和胡安·C·特龙科索(Juan C. Troncoso),利用绑定了淀粉样β蛋白(amyloid-beta protein)的抗体进行了一项实验。在阿尔茨海默病患者脑中,淀粉样β蛋白会形成损伤性斑块。研究人员利用遗传工程使实验室小鼠患上一种类似于阿尔茨海默病的疾病。上述抗体在发病早期便与病鼠脑中的异常蛋白结合。这项发现也许会被逐步应用于人类试验,并有朝一日与目前正在开发的药物一起,被用于阿尔茨海默病的预防性治疗。
但是,这种光学互连设备必须在精确的时刻发送数据,所以需要对光脉冲进行可控延迟。一种方法是将光脉冲引入用波导制成的微小环路,光脉冲在其中回旋多次后,再继续它们的旅程。美国纽约州约克镇高地IBM托马斯·J·沃森研究中心(Thomas J. Watson Research Center)的尤里·A·弗拉索夫(Yurri A. Vlasov)及其同事,将光脉冲导入环路,运行了100圈之后,没有任何明显的数据损失。
一些研究人员想方设法延迟光线,但在美国伦斯勒理工学院(Rensselaer Polytechnic Institute),E·佛瑞德·舒伯特(E. Fred Schubert)领导的另一些研究人员却发明了一种几乎不反射光线的涂层。这种涂层约厚600纳米,由五层纳米棒层叠而成。这些纳米棒由二氧化钛和二氧化硅构成,直径约25纳米,长度可达300纳米。这些纳米棒层叠在一个透明半导体薄片上,每一层的折射率都比下面一层更低。无涂层半导体的光反射率约为12%;如果加上涂层,反射率可以小到0.1%。这种涂层可以应用于光子元件、发光二极管和太阳能电池上。
还有一些研究人员正在追求一个更加远大的目标,那就是制造量子计算机。这种计算机可以利用量子力学的奇特效应,实现空前的运算处理能力。一种实现方案需要把量子数据存储在原子的长寿命量子态中,还要用光波传输这些量子数据。但是,要把存储和传输结合起来,就必须要让脆弱的量子态能够在物质与光之间传递。2006年,在丹麦哥本哈根大学尼尔斯·玻尔研究所的实验物理学家尤金·S·波尔齐克(Eugene S. Polzik),以及德国加兴马普量子光学研究所的理论物理学家伊格纳西奥·西拉克(Ignacio Cirac)的共同领导下,一个研究小组成功将一组量子信息从一个光脉冲传递给一团原子云。
自20世纪90年代以来,全世界已出现了200多例人类“疯牛病”——新型克雅氏病(variant Creutzfeldt-Jakob disease)。对于这种破坏性的致命疾病,以及其他由畸形恶性蛋白颗粒朊病毒(prion)感染所致的疾病,至今还没有有效的治疗方案。英国伦敦神经学研究所的乔凡娜·R·马卢奇(Giovanna R. Mallucci)及其合作者,进行了一项小鼠试验,使人们看到了根治此类疾病的曙光。研究人员利用遗传工程技术,使小鼠只在出生后的前9周内产生PrP蛋白,而正常小鼠会持续表达该蛋白。如果小鼠体内存在阮病毒,PrP蛋白就会错误折叠,产生更多的朊病毒。
最基础的科学研究或许可以为我们提供一些启示。光合作用(photosynthesis)把阳光转化为化学能的效率,几乎达到百分之百,这种神奇的本领促使研究人员开始深入发掘光合作用的复杂机理。美国芝加哥大学的格雷戈里·S·恩格尔(Gregory S. Engel)曾在加利福尼亚大学伯克利分校任职,他领导的一个研究团队将一种绿硫细菌冷却到77 K(-196.15℃),然后用超短脉冲激光照射细菌,这样就能够跟踪能量在细菌光合作用器官中的流动情况。
其他一些科学家则在寻找更好的办法,利用阳光来解决建筑物的冷暖调节问题。美国伦斯勒理工学院(Rensselaer Polytechnic Institute)的史蒂文·范德塞尔(Steven Van Dessel)及其同事,研制了一套把太阳能电池板与热电式热泵结合起来的原型系统——“活性建筑物外包层”(Active Building Envelope,缩写为ABE)。在这套系统中,太阳能电池板产生的电力驱动热泵向建筑物内部供应暖气或冷气,具体取决于电流流动的方向。该研究小组还打算用薄膜型太阳能电池和热电材料取代目前使用的厚重元件,他们正在考察这种想法的可行性。这类透明薄膜可以像釉料那样,覆盖在建筑物的窗户以及汽车的挡风玻璃和天窗上。
反过来,诱导人工培养的胚胎干细胞分化为表皮细胞或其他组织细胞也非易事。这需要某些特定基因的活化,再加上周围环境发出特殊信号。美国加利福尼亚大学伯克利分校的杨培东(Peidong Yang)和旧金山市格拉德斯通心血管病研究所(Gladstone Institute of Cardiovascular Disease)的布鲁斯·R·康克林(Bruce R. Conklin)展示了一种新方法:将胚胎干细胞培养在纳米硅丝丛中,就能向细胞传递那些外部信号。杨培东和康克林预测,未来的研究人员可以借助纳米丝向细胞传递电脉冲或化学物质,诱导干细胞分化成特定的组织细胞。
一部分科学家致力于操纵胚胎干细胞进行分化,另一些研究者却在探索,如何让成年人体内的干细胞保持未分化状态。2007年,美国哈佛大学医学院的弗兰克·D·麦基翁(Frank D. McKeon)发现,一个叫做p63的基因的活性,是细胞维持干细胞状态的关键,至少在上皮细胞中确实如此。(上皮细胞包括皮肤、前列腺、乳腺及胸腺组织的细胞。)
人体修复术的研究,往往在战争期间或战争刚结束时取得突飞猛进。令人遗憾的是,过去几年也不例外。美国芝加哥康复中心的托德·A·库伊肯(Todd A. Kuiken)和他领导的团队,在“神经定向再分布”(targeted reinnervation)技术上取得了开创性的进展。这项技术专门探索如何把人造手臂接在神经系统上。他们从伤者失去手臂的那一侧肩膀上取出神经,移植到胸部。装了假肢的人想移动假肢时,只要用力使胸部肌肉收缩,电极就会探测到这一活动,并将信息传递给假肢,使它做出相应动作。研究人员已经开始试验双向连接,试图把假肢传感器发来的信号转发给感觉神经。
在美国,每年有20多万人遭遇膝部韧带撕裂伤,这种损伤会造成极大痛苦,而且很难治愈。美国弗吉尼亚大学的加图·T·洛朗森(Cato T. Laurencin)领导的团队,开发出一类新型聚合物,可以充当组织支架,促进新韧带的生长。在对家兔膝盖进行的试验中,再生的韧带可以承受相当于正常韧带1/3的张力。不可否认,大约有一半的兔子会再次发生韧带撕裂,不过洛朗森认为,这是因为他们很难说服兔子乖乖接受物理治疗。
学生书包里几本又厚又重的课本足以造成肌肉劳损。美国宾夕法尼亚大学和马萨诸塞州伍兹霍尔市海洋生物学实验室的劳伦斯·C·罗梅(Lawrence C. Rome)及其同事,发明了一种可以最大程度减小背包压力的悬吊系统。在行走过程中,人的身体通常以几厘米的幅度上下起伏,书包也随之一上一下。一个2.3千克重的笔记本电脑,行走过程中会对背部产生相当于3.7千克的冲击力,跑动过程中冲击力将增大到6.9千克。利用滑轮和弹力绳,研究人员使这种由运动产生的上下起伏减少了一半以上,从而使背包在感觉上轻了1/5。
血吸虫病(schistosomiasis)是一种寄生虫病,会让人虚弱无力。全球每年约有两亿人感染此病,使它成为仅次于疟疾的世界卫生难题。目前,这种慢性病的常用治疗药物只有一种——吡喹酮(praziquantel),这不禁令人担心:有朝一日,血吸虫产生抗性后,我们该如何应对?美国加利福尼亚大学旧金山分校的康纳·R·卡弗里(Conor R. Caffrey)及其同事,研制出了一种可以杀灭血吸虫的新药。通过深入研究,他们发现K11777药物会干扰血吸虫消化酶的功能,从而将它们从实验室小鼠体内清除干净。