|
丹麦和美国的科学家近日利用来自俄罗斯冻土带的十头猛犸(Mammuthus primigenius)毛发标本,成功拼凑出了猛犸的线粒体DNA序列。这一成果显示了毛发惊人的抗降解能力,以及它在获得远古DNxxx断方面出人意料的有用性。相关论文发表在9月28日的《科学》杂志上。
领导最新研究的是丹麦哥本哈根大学的Tom Gilbert以及美国宾夕法尼亚州立大学的Webb Miller和Stephan Schuster。 研究组从10头西伯利亚出土的猛犸象身上获得了毛发标本, 这些猛犸象的死亡时间从1.2万年到5万年前,跨度达3.8万年。在这以前,学界仅出版过七种已灭绝动物的线粒体基因组:四种鸟类、两种猛犸象、一种乳齿象。用于研究的猛犸象毛发样本中,最早的已经有5万年历史了。其中一个样本来自1799年发现的“亚当斯猛犸象”,它是植物学家迈克尔-亚当斯于1804-1806年间从永冻土中挖出来的,这头猛犸象大约在3.6万年前死亡。亚当斯猛犸象从永冻土中挖出来以后在一家俄罗斯博物馆已经室温保存200年,研究组仅靠从其身上获取的0.2克毛发样本就完成了完整的线粒体DNA分析。 研究小组从现已灭绝的西伯利亚猛犸毛发中萃取了DNA,利用“猎枪”(shotgun)技术(即先将DNA标本破坏成碎片,然后利用计算机程序使其重新聚合)。
早在2005年,就有科学家对猛犸进行过基因测序。不过,此次针对十个个体的测序规模要更大,它令已经测定线粒体基因组的灭绝动物的数量增加了一倍多,大大丰富了灭绝动物的遗传数据库。
通常情况下,毛发没有骨骼保存得完好。所以一般认为,经过长期的历史演变后,毛发中的DNA已经丧失殆尽。而此次研究给出了相反的证据。实验所用毛发中的DNA降解速率比人们想的要慢得多,与远古骨DNA1.7%的有害降解速率相比,这些毛发DNA的有害降解速率只有0.24%,研究人员表示,这可能是由毛发水含量较低造成的。 对于为什么从毛发中而不是传统的骨骼或肌肉中获取已灭绝动物的遗传物质,Schuster解释说:“骨骼和肌肉中的DNA容易破碎、降解,并被其它来源的遗传物质(如来自微生物的)所污染,从而大大降低其科研价值,仅在极特殊的保存条件下才有可能获得可恢复且未被污染的DNA,并且利用从骨骼或肌肉获得的DNA分析工作量往往很大,进展漫长,有的单项研究就要花费6年时间。而我们从毛发中获得DNA后,仅用了五分钟就完成了整个线粒体基因组的测序”。
这种通过毛发获得已灭绝动物遗传物质的新方法还可帮助研究人员研究其它已灭绝物种的基因以及来自不同种群的几个动物的遗传学关系。Schuster 表示,我们准备用毛发及其它含角蛋白的身体部分(如指甲、角),来破解已灭绝古生物的秘密,并进一步科学地推测出它们是怎样灭绝的。
另外,如果此次实验所用技术能够同样应用于毛皮、羽毛等标本,那么动物学家将能够借此描绘出灭绝物种更为精确的族谱图。Miller和同事指出,标本中的DNA看起来在常温下仍然能够存在,这为展开相关的研究提供了便利。
这项研究还可能引发古基因学(paleogenomics)领域的突破。一直以来,在对古生物进行DNA测序时面临的一个重大挑战就是很难找到未损坏和未污染的古生物的遗传物质以及能够产生足够长且精确的基因测序技术。而现在,利用发现的这种高效获取古生物遗传物质的新途径和成熟的454测序法,古生物研究将进入真正的古基因学分析时代。Schuster 表达了他对古基因学前景的期盼:“我们希望有机会可以对查尔斯-达尔文, 等大师所收集的已灭绝物种的标本进行古基因学分析,我们甚至可以预测,在不久的将来,世界各地的博物馆将为已灭绝的物种加上基因组的分析说明”。
原始出处:
Science 28 September 2007:
Vol. 317. no. 5846, pp. 1927 - 1930
DOI: 10.1126/science.1146971
Whole-Genome Shotgun Sequencing of Mitochondria from Ancient Hair Shafts
M. Thomas P. Gilbert,1* Lynn P. Tomsho,2 Snjezana Rendulic,2 Michael Packard,2 Daniela I. Drautz,2 Andrei Sher,3 Alexei Tikhonov,4 Love Dalén,5 Tatyana Kuznetsova,6 Pavel Kosintsev,7 Paula F. Campos,1 Thomas Higham,8 Matthew J. Collins,9 Andrew S. Wilson,10 Fyodor Shidlovskiy,11 Bernard Buigues,12 Per G. P. Ericson,13 Mietje Germonpré,14 Anders G鰐herstr鰉,15 Paola Iacumin,16 Vladimir Nikolaev,17 Malgosia Nowak-Kemp,18 Eske Willerslev,1 James R. Knight,19 Gerard P. Irzyk,19 Clotilde S. Perbost,19 Karin M. Fredrikson,20 Timothy T. Harkins,20 Sharon Sheridan,20 Webb Miller,2* Stephan C. Schuster2*
Although the application of sequencing-by-synthesis techniques to DNA extracted from bones has revolutionized the study of ancient DNA, it has been plagued by large fractions of contaminating environmental DNA. The genetic analyses of hair shafts could be a solution: We present 10 previously unexamined Siberian mammoth (Mammuthus primigenius) mitochondrial genomes, sequenced with up to 48-fold coverage. The observed levels of damage-derived sequencing errors were lower than those observed in previously published frozen bone samples, even though one of the specimens was >50,000 14C years old and another had been stored for 200 years at room temperature. The method therefore sets the stage for molecular-genetic analysis of museum collections.
1 Centre for Ancient Genetics, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
2 Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, 310 Wartik Building, University Park, PA 16802, USA.
3 Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninsky Prospect, Moscow 119071, Russia.
4 Zoological Institute, Russian Academy of Sciences, Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia.
5 Centro UCM-ISCIII de Evolución y Comportamiento Humanos, c/Sinesio Delgado 4, 28029 Madrid, Spain.
6 Department of Paleontology, Faculty of Geology, Lomonosov Moscow State University, Leninskiye Gory, Moscow 119992, Russia.
7 Institute of Plant and Animal Ecology, The Urals Branch of the Russian Academy of Sciences, 202 8th of March Street, Ekaterinburg 620144, Russia.
8 Research Laboratory for Archaeology and the History of Art, Dyson Perrins Building, South Parks Road, Oxford OX1 3QY, UK.
9 Departments of Biology and Archaeology, BioArch, University of York, York YO10 5YW, UK.
10 Department of Archaeological Sciences, University of Bradford, Bradford BD7 1DP, UK.
11 The Ice Age Museum, All-Russia Exhibition Centre, pavilion 71, Moscow 129223, Russia.
12 2 Avenuedela Pelouse, F-94160 Saint Mandé, France.
13 Department of Vertebrate Zoology, Swedish Museum of Natural History, Post Office Box 50007, S-10405, Stockholm, Sweden.
14 Department of Palaeontology, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium.
15 Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyv鋑en 18D, SE-752 36 Uppsala, Sweden.
16 Department of Earth Sciences, University of Parma, Parco Area delle Scienze 157/A, 43100 Parma, Italy.
17 Department of Glaciology, Institute of Geography, Russian Academy of Science, 29 Staromonetny Pereulok, Moscow 109017, Russia.
18 Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK.
19 454 LifeSciences, 20 Commercial Street, Branford, CT 06405, USA.
20 Roche Diagnostics Corporation, 9115 Hague Road, Indianapolis, IN 46250–0414, USA.
* These authors contributed equally to this work.
To whom correspondence should be addressed. E-mail: webb@bx.psu.edu (W.M.); scs@bx.psu.edu (S.C.S.) |
|