|
楼主 |
发表于 2006-1-2 12:48:39
|
显示全部楼层
8. 结论
(1) MRSA是全球性医院中一个严重的问题,其严重性更因某些MRSA菌株继续突变使金黄色葡萄球菌对万古霉素敏感性下降而变得更为突出,因而极需采用准确的方法监测MRSA与VRSA的发生率,更需开发新的安全有效的抗MRSA感染与抗VRSA感染的抗菌药物。
(2) 在不同国家与地区中金黄色葡萄球菌对甲氧西林的耐药率存在着很大的差异,这除了与所用敏感试验方法、测试条件和监测研究的质控等影响因素有关外,与某些国家和地区所收集的菌株来自不同比例的院内感染与社区感染患者也可能有关。中国BRSSG(2000~2001)的监测结果表明MRSA发生率在HAI病人中高达89.2%,
显著高于CAI病人中MRSA的发生率30.2%。这个发现可用来解释某些国家或地区MRSA发生率较高是否可能因HAI病人所占比例较高之故。
ddpig20000
β 内酰胺类抗生素的增效制剂
1 β 内酰胺酶抑制剂的特点及应用致病菌对β 内酰胺类抗生素耐药的主要原因是产生β 内酰胺酶,导致β 内酰胺酶类抗生素的β 内酰胺环水解破坏。寻找酶抑制剂是解决耐药增强疗效的重要途径之一。自1976年棒酸问世以来,发现了许多青霉烷砜类、氧青霉烷类、(碳)青霉烯类、头孢烯类、单环β 内酰胺类以及非β 内酰胺类的β 内酰胺酶抑制剂,大致可分为竞争性与非竞争性两大类。设计增效制剂主要涉及的是竞争性的不可逆的β 内酰胺酶抑制剂。目前常见的酶抑制剂主要有棒酸、舒巴坦和他唑巴坦,都属于不可逆性β 内酰胺酶自杀性抑制剂,由它们组成的β 内酰胺类复合制剂在临床上有很好的抗菌增效作用。然而,这些酶抑制剂对β 内酰胺酶几乎没有抑制作用。棒酸,又名克拉维酸,属于氧青霉烷类,亦为β 内酰胺类抗生素,但抗菌活性很差,本品对β 内酰胺酶和广泛存在于肠杆菌科细菌、流感杆菌、淋球菌和卡他布拉汉菌的质粒介导的酶有强大抑制作用;对肺炎杆菌、奇异变形杆菌和脆弱类杆菌所产生的染色体介导的β 内酰胺酶也有快速抑酶作用,但是对摩根杆菌、雷极杆菌、沙雷菌属、肠杆菌属和绿脓杆菌等染色体介导的β 内酰胺酶的抑酶活性甚差,本品常与青霉素类药物联合使用以提高疗效。舒巴坦本身具有一定的抗菌活性,常可单独用于淋球菌和脑膜炎球菌的周围感染,与氨苄西林联用可使产酶菌株对氨苄西林恢复敏感,它可抑制β 内酰胺酶Ⅱ、Ⅲ、Ⅳ、Ⅴ等型酶,与棒酸的抑酶谱相似,但较棒酸的抑酶作用弱,二者对Ⅰ型酶均无效。他唑巴坦本身只有弱的抗菌活性,但抑酶谱广,能抑制革兰阴性菌产生的各种质粒介导的β 内酰胺酶,对染色体介导的I型酶也有效。他唑巴坦与β 内酰胺类抗生素联合使用具有广谱的抗菌作用与抑酶增效活性。
2 常见的增效制剂品种及其临床应用
2.1 由棒酸组成的β 内酰胺类复方制剂
.1.1 替卡西林(羧噻吩青霉素)+棒酸 商品名(ti mentin)又称泰门汀或特美汀,克服了替卡西林易被β 内酰胺酶破坏的缺点,主要用于全身性感染或厌氧菌、需氧菌混合感染。其不良反应与单独使用替卡西林相似。
2.1.2 阿莫西林+棒酸 (商品名augmentin)又称安美汀、奥格门汀、安灭菌等,本品在胃酸中稳定,主要分布于细胞外液,在尿中的药物浓度较高,对耐氨苄西林和羟阿莫西林的产β 内酰胺酶菌株作用较强,主要用于产酶耐药菌引起的轻中度感染。
2.2 由舒巴坦组成的β 内酰胺类复方制剂
2.2.1 氨苄西林+舒巴坦(商品名unasyn) 又名舒氨新,优立新等。氨苄西林+舒巴坦协同作用使β 内酰胺酶钝化,抗菌效力增强,常用于肠杆菌科细菌的产酶株以及粪链球菌或产酶葡萄球菌引起的感染。阿莫西林+舒巴坦,又名威奇达。由阿莫西林钠与舒巴坦钠以2∶1组成的复合制剂。本品抑制细菌转肽酶,阻止细菌细胞壁合成过程中粘肽的交联反应,破坏细胞壁的完整性,同时促发细菌自溶系统,使菌体崩解,对临床常见的各种革兰阳性菌及革兰阴性菌包括厌氧菌都有明显杀灭作用。其抗菌作用较单一药物强,尤其对产β 内酰胺酶的耐药菌抗菌活力明显增加,其抗菌性能强于阿莫西林+棒酸的复合制剂,且稳定性更强,抗酶谱更宽。
2.2.2
哌拉西林+舒巴坦(又名特灭,苏哌等) 本品由0.25g舒巴坦钠与1.0g哌拉西林组成复合制剂,具有良好的药动学特性,血、尿及组织浓度高,对许多革兰阳性和革兰阴性菌和厌氧菌均有活性,不仅在体外对产酶耐药菌株具高度活性,在临床上对医院中的耐药菌感染具有很好疗效,尤其增强了对耐哌拉西林菌株的抗菌作用,特别适用于同时患有多发病预后不良的耐药菌感染。
2.2.3 头孢哌酮+舒巴坦(商品名sulperazone) 又名舒普深、舒哌酮、海舒必、铃兰欣、瑞普欣、优普酮等。头孢哌酮与舒巴坦比例1∶1,舒巴坦有效分解了致病菌β 内酰胺酶从而增强头孢哌酮对葡萄球菌、假单胞菌属、脆弱拟杆菌的活性。这一复合制剂的使用,使头孢哌酮具备了广谱、低毒、耐酶、高效等特点,在临床上对呼吸道皮肤软组织及泌尿系统的中重度感染疗效较好。
2.3 由他唑巴坦组成的β 内酰胺类复方制剂 哌拉西林+他唑巴坦(商品名tazocin),又名联邦他唑仙,海他欣等。他唑巴坦为不可逆竞争性β 内酰胺酶抑制剂,具有强大而广泛的抑制β 内酰胺酶作用,与哌拉西林有很好的药动学同步性,呈现出很好的协同抗菌活性。它可使哌拉西林对产酶菌的MIC下降到1/2~1/8,可以增强哌拉西林对厌氧菌和产酶菌的杀菌效果,基本覆盖了临床常见感染致病菌,而且疗效显著,在治疗下呼吸道、腹腔感染时其临床有效率高于泰能,适用于对哌拉西林耐药而对本品敏感的产β 内酰胺酶的细菌引起的下呼吸道、泌尿道、腹腔内、皮肤软组织感染、妇科感染、骨与关节感染、细菌性败血症。
Xhqpx
β-内酰胺酶耐药及对策
解放军总医院呼吸科 管希周
β-内酰胺酶的分类,主要包括分子结构分类(根据氨基酸序列的不同)及根据β-内酰胺酶底物谱和酶抑制剂谱分型(Bush 1995分型)两种。分子结构分类可以将β-内酰胺酶分为A、B、C、D四类,该分类将超广谱β-内酰胺酶(ESBLs)归于其中A类,质粒型头孢菌素酶(Amp C酶)归为C类,而金属酶被归为B类。
1、ESBLs
临床一旦发现由ESBLs造成的耐药情况,我们可以采取以下措施:①如果确认为产ESBLs菌株,则不能使用包括三代头孢菌素在内的β-内酰胺类抗生素,即使体外实验敏感,体内治疗也往往无效。②应用抗生素与β-内酰胺酶抑制剂合剂,如阿莫西林+克拉维酸、替卡西林+克拉维酸、头孢哌酮+舒巴坦、哌拉西林+他唑巴坦、美洛西林+舒巴坦等。③非β-内酰胺类抗生素如氨基糖甙类、喹诺酮类仍对产ESBLs细菌保持一定的疗效,但产ESBLs细菌如携带对氨基糖甙类、喹喏酮类药物的耐药基因则亦会引起对这些抗生素耐药。④头霉素类抗生素如头孢西丁、头孢美唑和头孢替坦等,或者使用氧头酶素类如拉氧头孢等,这些抗生素的疗效均显著强于抗生素与酶抑制剂合剂及喹诺酮类,亦要强于氨基糖甙类。⑤目前对ESBLs最有效的抗生素依然是碳青霉烯类药物,如亚胺培南、美罗培南等。⑥不推荐使用四代头孢菌素。
2、AmpC酶
AmpC酶的危害性要更甚于ESBLs,对于产AmpC酶细菌的抗生素治疗可以选择的方案有:①第四代头孢菌素;②碳青霉烯类抗生素;③对其敏感的非β-内酰胺类抗生素(如氨基甙类、喹诺酮类);④常规的青霉素类、三代头孢菌素、头霉素类酶抑制剂和β-内酰胺抗生素合剂往往对该类细菌无效,而正在研究中的特异性AmpC酶阻滞剂如BRL42175、Ro47-8284、Ro48-1256和Ro48-1220等虽然体外效果不错,但距临床应用还有一定时间。
3、碳青霉烯类水解酶
碳青霉烯类水解酶包括:①分类属于2f型的A类酶,具有丝氨酸位点,可以被克拉维酸抑制,如SME-1、VIM-1以及IMI-1等。②分类属于3型的B类酶,也叫金属酶,对单环类敏感,不被克拉维酸抑制,但可被EDTA抑制,如IMP-1、L1、CcrA等。治疗携带该类酶的细菌的方法不多,对于A类碳青霉烯酶克拉维酸可能有效,而对于B类金属酶单环类可能有效。另外,非β-内酰胺类抗生素治疗也是可以考虑的方法,喹诺酮类和氨基糖甙类抗生素仍然对这些细菌保持着一定的敏感性。但由于该类酶往往和其他类型的β-内酰胺酶同时存在,给抗生素治疗带来了困难。
在采取有效措施治疗携带该类酶的细菌的同时必须施行有效的预防策略。首先,必须严格无菌及消毒制度,洗手不仅能够预防各种耐药细菌的暴发流行,而且能够有效地减少耐药质粒的传播;其次,合理应用抗生素是减缓耐药性产生的根本因素,包括:①尽量减少错用及滥用抗生素;②做好病人教育,因为有的病人不按规定服药造成感染的细菌不能完全清除,未被杀死的细菌将对该种抗生素产生抵抗力;③改变用药策略,不要长期及单一使用某种抗生素以减少耐药性的产生。同时我们应不断对细菌的耐药情况进行监测、深入耐药机制的研究及对耐药性菌株的检测方法加以改进,这对指导临床正确选择抗生素以达到有效治疗及减少耐药性产生至关重要。
Sunnyroboson
Vancomycin-Resistant Staphylococcus aureus (VRSA) in the Clinic: Not Quite Armageddon
VRSA世界末日决战?[CID杂志2004,38(15 April)一篇评论]
无法上传附件PDF文件,原文复制,有点乱。
CID 2004:38 (15 April) . EDITORIAL COMMENTARY
E D I T O R I A L C O M M E N TA R Y
Vancomycin-Resistant Staphylococcus aureus in the Clinic: Not Quite Armageddon
Karen Bush Johnson & Johnson Pharmaceutical Research & Development, Raritan, New Jersey
(See the article by Whitener et al. on pages 1049–55) Received 8 December 2003; accepted 9 December 2003; electronically published 24 March 2004. Reprints or correspondence: Dr. Karen Bush, Johnson & Johnson Pharmaceutical Research & Development, 1000 Rte.
202 S, Raritan, NJ 08869 (kbush@prdus.jnj.com)
Clinical Infectious Diseases 2004; 38:1056–7
2004 by the Infectious Diseases Society of America. All rights reserved.
In 1992, Noble et al. [1] reported that they could transfer the vancomycin-resistant genes vanA, vanH, vanX, and vanY from vancomycin-resistant enterococci to a strain of Staphylococcus aureus both in vitro and on the skin of an obese mouse. The world then waited for vancomycinresistance to be identified in a naturally occurring clinical isolate of methicillinresistant S. aureus (MRSA). Dire warnings about the major clinical implications of multidrug-resistant MRSA and vancomycin-resistant S. aureus (VRSA) led to much speculation about untreatable staphylococcal infections. However, after waiting 10 years, some clinicians concluded that this was not going to happen on the basis of the observation that enterococci and staphylococci frequently occupy the same ecological niche and had been given every reasonable opportunity to exchange genes in multiple-patient microenvironments. Unfortunately, as was seen in the summer of 2002, two strains of vanA-producing MRSA were identified in the United States within 3 months of each other in unrelated patients in Michigan and Pennsylvania [2, 3].
In this issue of the journal, investigators from the Centers for Disease Control and Prevention (CDC) and The Penn State Milton S. Hershey Medical Center (Hershey, PA) describe the clinical presentation of the second of these 2 cases [4]. The information provided is somewhat reassuring, in spite of the ominous predictions in the popular press about the potential of these organisms to become resistant to virtually all known antibiotics [5].
Key features of this study include that this patient, who had an infected heel ulcer and osteomyelitis, had not been admitted to a hospital in the previous 5 years and had not been treated with vancomycin during that time period. Thus, the staphylococcal strain was assumed to have originated from the community. It is notable that the patient’s heel had been infected with MRSA and vancomycin-resistant enterococci (VRE) before his hospital admission, providing an opportunity for horizontal transfer of vancomycin-resistance determinants from the Enterococcus species to the Staphylococcus species in a dynamic system. The Michigan VRSA isolate was also recovered from a patient with foot ulcerations. In both cases, the patients had underlying chronic illnesses, which may have made them more vulnerable to serious infections. With the increasing number of MRSA strains being reported in the community [6], concomitant with the ubiquity of commensal enterococci, a high possibility exists for additional patients to be exposed to this kind of gene transfer.
It is notable that the patient from Pennsylvania had been treated with multiple antibiotics before the identification of the VRSA strain, but not with vancomycin. This selection by unrelated antibiotics is consistent with the findings from laboratory studies by Noble et al. [1], in which selection of VRSA occurred orders of magnitude more frequently after exposure to rifampicin, erythromycin, or chloramphenicol, compared with vancomycin. This observation once again argues for judicious use of antibiotics to minimize the threat of VRSA selection in patients at risk.
On a molecular level, the 2 VRSA strains appear to be nonclonal. On the basis of staphylococcal PFGE patterns, CDC investigators recently showed that both VRSA isolates had pulsed-field types of the USA100 type—the most common, but also the most diverse, MRSA profile in the United States [7]. Although related at a high level, there was sufficient genetic diversity to conclude that the 2 strains emerged independently [4]. Even though both isolates carried only the vanA resistance determinant, the Pennsylvania strain was susceptible to teicoplanin, whereas the Michigan strain was resistant to teicoplanin,as predicted for a VanA phenotype. Gene dosage was thought to play a role and would provide a consistent explanation of why the MICs of vancomycin were 32 and 1024 mg/mL for the Pennsylvania and Michigan isolates, respectively. These phenotypic differences emphasize the fact that the observed gene transfer was not a single event resulting in 2 clonal strains. Thus, it is likely that other VRSA strains will arise.
In retrospect, one can view the arrival of clinical VRSA somewhat more optimistically than was anticipated. First, it was not a pan-resistant MRSA. Although resistant to vancomycin and to other agents such as aminoglycosides, tetracycline, and the marketed fluoroquinolones, the Pennsylvania strain responded with low MICs for a number of older antibiotics,as well as investigational antibacterial agents [8]. US Food and Drug Administration–approved agents with MICs in the susceptible range included drugs from 8 different antibiotic classes: minocycline (MIC, 0.12 mg/mL), trimethoprim-sulfamethoxazole (TMP-SMX; MIC, 2/38 mg/mL), chloramphenicol (MIC, 8 mg/ mL), rifampin (MIC, 0.06 mg/mL), mupirocin (MIC, 0.12 mg/mL), linezolid (MIC, 1 mg/mL), quinupristin-dalfopristin (MIC, 1 mg/mL), and daptomycin (MIC, 0.5 mg/ mL). Investigational drugs with MICs of mg/mL for this VRSA isolate included the glycopeptides dalbavancin and oritavancin, tigecycline, and newer agents in the classes of the anti-MRSA cephalosporins, quinolones, and oxazolidinones [8]. However, one cannot dismiss the probability that other resistances may emerge in future VRSA strains.
On the basis of susceptibility data, therapeutic options include a number of reasonable alternatives that may lead to clinical cures. In an in vitro pharmacodynamic model with simulated endocardial vegetations, daptomycin, quinupristin-dalfopristin, and linezolid all demonstrated bactericidal activity against the Michigan VRSA strain [9]. Indeed, after 6 weeks of treatment with linezolid, piperacillin-tazobactam, and TMP-SMX, the patient in Pennsylvania did not have any culturable VRSA, MRSA, or VRE [4]. Likewise, the Michigan patient responded favorably to systemic therapy with TMPSMX [10].
It is also notable that neither VRSA strain appeared to be highly virulent. In both cases, the strains were not transmitted to contacts, including family members and health care workers. In Michigan, 375 swab specimens obtained from multiple contacts were shown to be negative for VRSA [10]. In the Pennsylvania case, standard infection-control measures were taken, and no additional VRSA or VRE isolates were identified from 283 contacts [4]. Of note, MRSA was cultured from samples obtained from a number of Pennsylvania contacts, including the patient’s daughter, whose MRSA strain had a very similar PFGE pattern to that of the patient’s VRSA strain. It is probable that the MRSA strain was transmitted between daughter and father, but that the VRSA strain developed independently and possibly required a compromised (previously infected) host in order to survive. This may indicate that the current VRSA strains will not become major pathogens in otherwise healthy populations. The fact that only 2 isolates have been identified worldwide since the summer of 2002 supports this hypothesis.
However, rigorous attempts must be made to screen staphylococcal isolates appropriately so that future cases can be rapidly identified and treated effectively. As discussed by Whitener et al. [4], disk diffusion testing alone might have misidentified the Pennsylvania strain. It is critical for laboratories to test vancomycin susceptibility using vancomycin-agar or nonautomated broth dilution assays with 24- h incubation periods to detect emerging VRSA strains. This imposes an additional burden on clinical laboratories, but it is essential that proper testing methodology be used before VRSA strains become entrenched in isolated hospitals.
In conclusion, a clinical isolate of the dreaded VRSA has now appeared. However, it is not as catastrophic as it could be. The 2 strains that were identified almost 18 months ago have not been followed by reports of additional strains. Both strains were susceptible to a number of older drugs and were successfully eradicated with familiar agents, including TMP-SMX. In addition, a number of investigational agents may also be effective for future treatment. We should proceed with caution, but, thus far, VRSA has been manageable when detected. Our major challenge in the future may not be treatment and dissemination of VRSA itself but, rather, the accurate detection ofVRSA when it appears.
References
1. Noble WC, Virani Z, Cree RGA. Co-transfer
of vancomycin and other resistance genes
from Enterococcus faecalis NCTC 12201 to
Staphylococcus aureus. FEMS Microbiol Lett
1992; 72:195–8.
2. Centers for Disease Control and Prevention.
Staphylococcus aureus resistant to vancomycin—
United States, 2002. MMWR Morb
Mortal Wkly Rep 2002; 51:565–7.
3. Centers for Disease Control and Prevention.
Vancomycin-resistant Staphylococcus aureus—
Pennsylvania, 2002. MMWR Morb Mortal
Wkly Rep 2002; 51:902–3.
4. Whitener CJ, Park SY, Browne FA, et al. Vancomycin-
resistant Staphylococcus aureus in the
absence of vancomycin exposure. Clin Infect
Dis 2003; 38:1049–55.
5. Manier J. Drug-resistant germs could pose
threat. Chicago Tribune. 28 November 2003.
6. Marcinak JF, Frank AL. Treatment of community-
acquired methicillin-resistant Staphylococcus
aureus in children. Curr Opin Infect
Dis 2003; 16:265–9.
7. McDougal LK, Steward CD, Killgore GE, et
al. Pulsed-field gel electrophoresis typing of
oxacillin-resistant Staphylococcus aureus isolates
from the United States: establishing a national
database. J Clin Microbiol 2003; 41:
5113–20.
8. Bozdogan B, Esel D, Whitener C, et al. Antibacterial
susceptibility of a vancomycinresistant
Staphylococcus aureus strain isolated
at the Hershey Medical Center. J Antimicrob
Chemother 2003; 52:864–8.
9. Cha R, Brown WJ, Rybak MJ. Bactericidal activities
of daptomycin, quinupristin-dalfopristin,
and linezolid against vancomycin-resistant
Staphylococcus aureus in an in vitro pharmacodynamic
model with simulated endocardial
vegetations. Antimicrob Agents Chemother
2003; 47:3960–3.
10. Quirk M. First VRSA isolate identified in USA.
Lancet Infect Dis 2002; 2:510.
Xhqpx
抗菌药物的作用机制及细菌耐药性机制的研究进展
(一)
自1940年青霉素问世以来,抗生素的开发与研究取得了迅速的发展。最初在土壤样品中寻找新品种,从微生物培养液中提取抗生素,继而开创了用化学方法全合成或半合成抗生素。β-内酰胺类抗生素品种经历了青霉素、半合成青霉素及头孢菌素等的飞跃发展;20世纪70年代末喹诺酮抗菌药物的问世及其新的衍生物的不断研究与开发,使该类药物的抗菌谱扩大和抗菌作用的增强;其他如氨基糖甙类及大环内酯类经过结构改造,各自均有新品种问世。随着抗生素研究的进展其作用原理及细菌的耐药机制的研究业已深入到分子生物学水平。
1 β-内酰胺类抗生素
1-1 β-内酰胺类抗生素的作用机制
β-内酰胺类抗生素为高效杀菌剂,对人的毒性极小,(过敏除外)。β-内酰胺类抗生素按其结构分为青霉烷、青霉烯、氧青霉烷、氧青霉烯、碳青霉烷、碳青霉烯、头孢烯、碳头孢烯、单环β-内酰胺(氮杂丁烷酮)等十类。其作用机制主要是阻碍细菌细胞壁的合成,导致胞壁缺损、水分内渗、肿胀、溶菌。而哺乳动物真核细胞无细胞壁,故不受影响。 细菌具有特定的细胞壁合成需要的合成酶,即青霉素结合蛋白(penicillin binding proteins,PBP)当β-内酰胺类抗菌药物与PBP结合后,PBP便失去酶的活性,是细胞壁的合成受到阻碍,最终造成细胞溶解、细菌死亡。PBP按分子量的不同可分为五种:每种又有若干亚型,这些PBP存在于细菌细胞的质膜中,对细菌细胞壁的合成起不同的作用。
β-内酰胺类抗生素的抗菌活力,一是根据与PBP亲和性的强弱,二是根据其对PBP及其亚型的选择即对细菌的作用特点而决定的。同是β-内酰胺类抗生素的青霉素、头孢菌素和碳青霉烯类,对PBP的亲和性是不同的。β-内酰胺类抗生素通过与这些PBP的结合阻碍其活性而显示抗菌活性。MIC90的值可间接反映抗生素与PBP的亲和性。
1-2 细菌对β-内酰胺类抗生素产生耐药性的作用机制
随着β-内酰胺类抗生素的广泛大量使用,对β-内酰胺类抗生素耐药的细菌越来越多,其耐药机制涉及以下四个途径:
1-2-1 细菌产生β-内酰胺酶 产生β-内酰胺酶使β-内酰胺类抗生素开环失活,这是细菌对β-内酰胺类抗生素产生耐药的主要原因。迄今为止报道的β-内酰胺酶已超过300种。它通过与β-内酰胺环上的羰基共价结合,水解酰胺键使β-内酰胺类抗生素失活。1995年Bush等将β-内酰胺酶分为Ⅳ型:第Ⅰ型为不被克拉维酸乙酯的头孢菌素酶;第Ⅱ型为常能被活性位点诱导的抑制剂抑制的β-内酰胺酶,第Ⅲ型不被所有的β-内酰胺酶抑制剂(乙二胺四乙酸和对氯苯甲酸泵除外)抑制的金属β-内酰胺酶;第Ⅳ型为不被克拉维酸抑制的青霉素酶。其中重要者为第Ⅰ型和第Ⅱ型。
第Ⅰ型酶分为由染色体介导产生的Ampc型β-内酰胺酶,和由质粒介导产生的Ampc型β-内酰胺酶,前者的产生菌有阴沟肠杆菌、铜绿假单胞菌等,后者主要由肺炎克雷伯和大肠埃希氏菌产生。第Ⅰ型酶主要作用于大多数青霉素,第一、二、三代头孢菌素和单环类抗生素。而第四代头孢菌素、碳青酶烯类不受该酶作用。该酶不能被β-内酰胺酶抑制剂所抑制。
AmpC型β-内酰胺酶的产生有2种可能:1)在诱导剂存在时暂时高水平产生,当诱导剂不存在时,酶产量随之下降;2)染色体上控制酶水平表达的基因发生突变,酶持续稳定水平产生。由这种耐药菌引起的感染死亡率很高。
以前认为第2组细菌(肠杆菌属)只产生典型的AmpC型β-内酰胺酶,但目前的一些研究提示它们也能产生第II型酶即超广谱β-内酰胺酶(ESBLs)。第II型酶是由质粒介导产生的ESBLs,主要由肺炎克雷伯氏菌、大肠埃希氏菌等产生。但该酶可被β-内酰胺酶抑制剂所抑制。ESBLs可将耐药质粒以转化、传导、整合、易位、转座等方式传播给其它细菌,从而导致多种细菌产生耐药性。一项肺炎克雷伯氏菌的研究发现,216株细菌中2株产生ESBLs(14.8%),用过第三代头孢菌素的患者产生ESBLs肺炎克雷伯氏菌的分离率比未用过的患者明显增高(31%比3%,P<0.01),说明第三代头孢菌素菜与ESBLs的产生密切相关。故有人认为第三代头孢菌素类抗生素的滥用是引起这类耐药细菌出现的主要因素,调查还发现,β-内酰胺酶抑制和亚胺培南类药物不易诱导ESBLs产生。
1.2.2 改变抗生素与PBP的亲和力 改变参与细菌细胞壁合成的蛋白酶的分子结构,从而降低它们与β-内酰胺类抗生素的亲和性。β-内酰胺类抗生素的抗菌活性是根据其与PBP的亲和力强弱决定的。当β-内酰胺类抗生素与PBP结合后,便使PBP丧失酶活性,使细菌细胞壁的形成部位破损而引起溶菌,反之,则成为耐药菌。PBP基因的变异,使β-内酰胺类抗生素无法与之结合或结合能力降低,是形成耐药的根本原因。
1.2.3 细菌外膜通透性改变 改变细胞膜和细胞壁的结构,使药物难以进入细菌体内,引起细菌内药物摄取量减少而使细菌体内药物浓度低下。如愿以偿生物膜形成,使抗生素无法进入细菌体内。
1.2.4 主动外排 细菌的能量依赖性主动转运机制,能将已经进入细菌体内的抗生素泵出体外;降低了抗生素吸收速率或改变了转运途径,也导致耐药性的产生。
(二)
2 氨基糖苷类抗生素
2.1 氨基糖苷类抗生素的作用机制
氨基糖苷类抗生素临床应用迄今为止已有50多年,因其具有浓度依赖性快速杀菌作用、与β-内酰胺类抗菌药物产生协同作用、细菌的耐药性低、临床有效和价廉等优点,它仍是目前临床常用药物,广泛用于革兰氏阴性杆菌所致的败血症、细菌性心内膜炎和其它严重感染。其作用机制是通过抑制细菌细胞膜蛋白质的合成并改变膜结构的完整性而发挥强有力的杀菌作用。同时氨基糖苷类快速杀菌作用提示某些细菌致死因素可能在抑制其蛋白质合成作用之前产生。
2.2 细菌对氨基糖苷类抗生素产生耐药性的作用机制
2.2.1 药物摄取的减少 药物摄取的减少主要是由于膜的通透性降低所引起,而基因突变可导致膜的通透性降低,可使能量代谢如电子转运受到影响而减少氨基糖苷类药物的吸收;也可使药物的转运系统缺损而减少药物的摄取量。
2.2.2 主动外排 主动外排系统作为细菌耐药机制之一,存在于许多细菌中。细菌的主动外排系统主要分为四大类:(1)主要易化超家族(major facilitator superfamily, MFS),与哺乳动物的葡萄糖易化转运器具有同源性;(2)耐药结节分化家族(resistance-nodulation division(RND) family),包括能够泵出镉、钴和镍离子的转运蛋白;(3)葡萄球菌多重耐药家族(staphylococal multidrug resistance(SMR) family),由比较小的含有四个跨膜螺旋的转运器组成;(4)ATP组合盒(ATP-binding cassette(ABC)转运器,包括两个跨膜区和两个ATP结合亚单位。
2.2.3 酶的修饰钝化作用 这是细菌对氨基糖苷类抗生素发生耐药的主要机制。当氨基糖苷类抗生素依赖电子转运通过细菌内膜而到达胞质溶胶中后,与核糖本30S亚基结合,但这种结合并不阻止起始复合物的形成,而是通过破坏控制翻译准确性的校读过程来干扰新生链的延长。而异常蛋白插入细胞膜后,又导致通透性改变,促进更多氨基糖苷类药物的转运。氨基糖苷类药物修饰酶通常由质粒和染色体所编码,同时与可动遗传因子(整合子、转座子)也有关,质粒的交换和转座子的转座作用都有利于耐药基因掺入到敏感菌的遗传物质中去。氨基糖苷类药物修饰酶催化氨基糖苷药物氨基或羟基的共价修饰,使得氨基糖苷类药物与核糖体的结合减少,促进药物摄取EDP-II也被阻断,因而导致耐药。根据反应类型,氨基糖苷类药物修饰酶有N-乙酰转移酶(N-acetyltransferases, AAC)、O-核苷转移酶(O-nucleotidyltrferase ,ANT)和O-磷酸转移酶(O-phospotransferases, APH)。这些酶的基因决定簇即使在没有明显遗传关系的细菌种群间也能传播。
2.2.4 核糖体结合位点的改变 链霉素作用于核糖体30S亚基,导致基因密码的错读,引起mRNA翻译起始的抑制和异常校读。大量研究表明编码S12核糖体蛋白的rplS基因及编码16S rRNA的rrs基因突变都会使核糖体靶位点改变,使细菌对链霉素产生显著水平的耐药。S12蛋白是30S亚基中的一个组分,主要控制链霉素与30S亚基的结合,它可以稳定由16S rRNA所形成的高度保守的假节结构,Rpsl氨基酸的置换将会影响16S rRNA的高级结构,导致对链霉素的耐药,而16S rRNA结构的改变又破坏了16S rRNA与链霉素的相互作用。
(三)
3 喹诺酮类药物
喹诺酮类药物的作用机制主要是通过抑制DNA拓扑异构酶而抑制DNA的合成,从而发挥抑菌和杀菌作用。
细菌DNA拓朴异构酶有I、II、III、IV,分两大类,第一类有拓朴异构酶I、III,主要参与DNA的松解,第二类包括拓朴异构酶II、IV,其中拓朴异构酶II又称DNA促旋酶,参与DNA超螺旋的形成,拓朴异构酶IV则参与细菌子代染色质分配到子代细菌中。但拓朴异构酶I和III对喹诺酮类药物不敏感,喹诺酮类药物的主要作用靶位是DNA促旋酶和拓朴异构酶IV。革兰氏阴性菌中DNA促旋酶是喹诺酮类的第一靶位,而革兰氏阻性菌中拓朴异构酶IV是第一靶位。
DNA促旋酶通过暂时切断DNA双链,促进DNA复制转录过程中形成的超螺旋松解,或使松弛DNA链形成超螺旋空间构型。喹诺酮类药物通过嵌入断裂DNA链中间,形成DNA-拓朴异构酶-喹诺酮类三者复合物,阻止DNA拓朴异构变化,妨碍细菌DNA复制、转录、以达到杀菌目的。
3.2 细菌对喹诺酮类抗菌药物产生耐药性的作用机制
3.2.1 作用靶位的改变 1976年Gellert等发现DNA促旋酶,观察到萘啶酸能抑制大肠埃希氏菌DNA促旋酶,由萘啶酸耐药菌分离出的DNA促旋酶对萘啶酸表现出耐药性,据此确认喹诺酮类药物的作用靶位为DNA促旋酶。1990年加腾等发现大肠埃希氏菌拓朴异构酶IV能被喹诺酮类药物抑制,由喹诺酮耐药性MRSA克隆出的耐药基因之一的突变的拓扑异构酶IV基因,从而判明拓朴异构酶IV亦为喹诺酮类药物的靶位。
编码组成DNA促旋酶的A亚单位和B亚单位及parC和parE亚单位组成拓朴异构酶IV的parC和parE的耐药性。在所有的突变型中,以gyra的突变为主。Akasaka等研究发现:在150例临床分离的铜录假单胞菌的耐药株中,gyrA的突变占79.3%(119/150)。主要为Thr-83→Ile,Ala;Asp→87→Asn,Gly, Thr。其中又以Thr83→Ile的突变型为多见,约74.7%(112/150),而其它的突变型罕见。在耐药菌株中,有20株在gyrA上有两个突变,以Thr-83和Asp-87的替换最常见有16株。GyrA双点突变仅发生在喹诺酮类高度耐药的菌株中,这是因为gryA上的83和87位的氨基酸在提供喹诺酮类的结合位点时具有重要的作用。
而gyrB的突变株则较gyrA的突变少见。在13株分离的耐药菌株中,仅1株有gyrB的突变;在150例耐药菌中,仅发现27株细菌在gyrB存在突变,分别为Glu-468→Tyr(1)、Ser-468→Phe(3)、Glu-469→Val(1)、Glu-470→Asp(13)、Thr-437→Met(1)、Ala-477→Val(7)、Glu-459→Ang(1)。
parC的突变主要为Ser-87→Leu,Trp。但值得注意的是所有存在parC改变的菌株上都已存在gyrA的改变。因此可以肯定的是parC突变的发生是在gyrA突变之后才发生的,在同时具有gyrA和parC突变的菌株中,以gyrA上的Thr-83→Ile和parC上的Ser-87→Leu类型为最多见。同样可以肯定的是,gyrA上的第二个点突变是发生在parC点突变之后。
parE的突变型为Asp-419→Asn、Ala-425→Val。但在parE出现突变极其罕见(3/150)。
除此之外,gyrA、gyrB、parC、parE基因上还出现一些不引起氨基酸改变的静止突变。它们的意义尚不清楚。
在所有这些突变类型中,若II型拓朴异构酶上存在2个突变点(如gyrA和parC),它们引起对氟喹诺酮类的耐药远远大于只有一个突变点(如gyrA或gyrB上),前者是后者的3~4倍。同时没有发现突变仅出现在parC基因这一现象。这可能是因为DNA促旋酶是氟喹诺酮类的重要靶位,gyrA亚单位的改变可引起酶结构发生变化致空间位障,阻止喹诺酮类进入喹诺酮类作用区,或引起物理化学变化,干扰喹诺酮-酶-DNA的相互作用。这些结果显示gyrA上的突变的出现引起细菌对喹诺酮类发生耐药的主要机制,而parC突变只是进一步引起铜绿假单胞菌对喹诺酮的高度耐药。
主动外排 同氨基糖苷类药物,细菌中同样存在能泵出喹诺酮类药物的外排系统,降低菌体内药物的浓度而出现细菌的耐药性。
膜通透性改变 喹诺酮类药物与其它抗菌药物一样,依靠革兰氏阴性菌的外膜蛋白(OMP)和脂多糖的变异均可使细菌摄取药物的量减少而导致耐药。已发现多种喹诺酮耐药性外膜突变株如norB、norC、nfxC、nfxB和多种抗生素耐药的marA等。大肠埃希氏菌通透喹诺酮类药物的孔蛋白主要为OmpF和OmpC。在喹诺酮类药物作用下,发生变异而缺失OmpC。在喹诺酮类药物作用下,发生变异而缺失OmpF的菌株,药物不能进入细胞,出现耐药性,且常与四环素、氯霉素等抗生素交叉耐药。缺失OmpC的突变株敏感性变化较小。铜绿假单胞菌除上述变异外,还有OmpD2 、OmpG等变异,均可导致耐药性。
结束语
抗菌药物为人类的健康生存和发展作出了巨大的贡献。然而随后出现的细菌耐药性问题近年来已经发展到了非常严重地地步。深入了解药物的作用机制及其相关的耐药机制对研制新的有效的抗菌药物是非常必需的。可通过对目前已有的抗菌药物的化学结构进行改造,或合理的联合用药,对控制临床日益严重的感染疾病应有一定的帮助。 |
|