特安乐恩 发表于 2007-4-11 12:13:54

克莱因论数学与文化

   数学一直是形成现代文化的主要力量,同时又是这种文化极其重要的因素。

   数学学科并不是一系列的技巧。技巧是将数学的激情、推理、美和深刻的内涵剥落后的产物。首先,数学主要是一种寻求众所周知的公理法思想的方法。这种方法由17世纪一位著名的作家在论及数学和科学时,以某种不同的方式表述过:“数学家们像恋人……承认一位数学家的最初的原理,那么他由此将会推导出你也必须承认的另一结论,从这一结论又推导出其他的结论。”

   数学也是一门需要创造性的学科。在预测能被证明的内容时,和构思证明的方法时一样,数学家们利用高度的直觉和想像。在数学中,人的创造能力运用的范围,只有通过检验这些创造本身才能决定。

   智力方面的好奇心和对纯思维的强烈兴趣,激励许多数学家研究数的性质和几何图形,并且取得了富有创造性的成果。进行数学创造的最主要的驱动力是对美的追求。抽象数学思想的大师罗素曾直言不讳地说:数学,如果正确地看它,则具有至高无上的美——正像雕刻的美,是一种冷而严肃的美,这种美不是投合我们天性的微弱的方面,这种美没有绘画或音乐的那些华丽的装饰,它可以纯净到崇高的地步,能够达到严格的只有最伟大的艺术才能显示的那种完美的境地。一种真实的喜悦的精神,一种精神上的亢奋,一种觉得高于人的意识——这些是至善至美的标准,能够在诗里得到,也能够在数学里得到。

   除了完善的结构美以外,在证明和得出结论的过程中,运用必不可少的想像和直觉也给创造者提供了高度的美学上的满足。如果美的组成和艺术作品的特征包括洞察力和想像力,对称性和比例、简洁,以及精确地适应达到目的的手段,那么数学就是一门具有其特有完美性的艺术。

   伟大的思想家追求时代智力风尚,就如同妇女在服饰上赶时髦一样。即使是把数学作为纯粹业余爱好的富有创造性的天才,也会去研究令专业数学家和科学家感到十分激动的问题。但是,那些“业余爱好者”和数学家们一般并不十分关心他们工作的实用价值。

   实用的、科学的、美学的和哲学的因素,共同促进了数学的形成。把这些做出贡献、产生影响的因素中的任何一个除去,或者抬高一个而去贬低另外一个都是不可能的,甚至不能断定这些因素中谁具有相对的重要性。一方面,对美学和哲学因素作出反应的纯粹思维决定性地塑造了数学的特征,并且作出了像欧氏几何和非欧几何这样不可超越的贡献。另一方面,数学家们登上纯思维的顶峰不是*他们自己一步步攀登,而是借助于社会力量的推动。如果这些力量不能为数学家们注入活力,那么他们就立刻会身疲力竭,然后他们就仅仅只能维持这门学科处于孤立的境地。虽然在短时期内还有可能光芒四射,但所有这些成就会是昙花一现。

    数学的另一个重要特征是它的符号语言。与日常讲话用的语言不同,数学语言是慎重的、有意的而且经常是精心设计的,凭借数学语言的严密性和简洁性,数学家们就可以表达和研究数学思想,这些思想如果用普通语言表达出来,就会显得冗长不堪。这种简洁性有助于思维的效率。数学语言是精确的,它是如此精确,以致常常使那些不习惯于它特有形式的人觉得莫名其妙。如果一个数学家说:“今天我没看见一个人”(I did not see one person today),那么他的意思可能是,他要么一个人也没看见,要么他看见了许多人。一般人则可能简单地认为他一个人也没看见。数学的这种精确性,在一个还没有认识到它对于精密思维的重要性的人看来,似乎显得过于呆板,过于拘泥于形式。然而任何精密的思维和精确的语言都是不可分割的。

    毕达哥拉斯定理数学风格以简洁和形式的完善作为其目标,但有时由于过分地拘泥于形式上的完美和简洁,以致丧失了精确竭力要达到的清晰。 “直角三角形直角边的平方和等于斜边的平方。”这种简洁的用词使表述更为精练,而且这种数学表达式具有重要的意义,因为它的确是言简意赅。还有,由于这种惜墨如金的做法,任何数学文献的读者有时会发现自己的耐心受到了极大的考验。

    数学不仅是一种方法、一门艺术或一种语言,数学更主要的是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时影响着政治家和神学家的学说;满足了人类探索宇宙的好奇心和对美妙音乐的冥想;甚至可能有时以难以察觉到的方式但无可置疑地影响着现代历史的进程。在最广泛的意义上说,数学是一种精神,一种理性的精神。正是这种精神,使得人类的思维得以运用到最完善的程度,也正是这种精神,试图决定性地影响人类的物质、道德和社会生活;试图回答有关人类自身存在提出的问题;努力去理解和控制自然;尽力去探求和确立已经获得知识的最深刻的和最完美的内涵。

  数学是一棵富有生命力的树,它随着文明的兴衰而荣枯。它从史前诞生之时起,就为自己的生存而斗争,这场斗争经历了史前的几个世纪和随后有文字记载历史的几个世纪,最后终于在肥沃的希腊土壤中扎稳了生存的根基,并且在一个较短的时期里茁壮成长起来了。在这个时期,它绽出了一朵美丽的花——欧氏几何。   

  数学发展表明数学的生命力正是根植于养育她的文明的社会生活之中。事实上,数学一直是文明和文化的重要组成部分,因此许多历史学家通过数学这面镜子,了解了古代其他主要文化的特征。以古典时期的古希腊文化为例,它大约从公元前600年延续到公元前300年。由于古希腊数学家强调严密的推理以及由此得出的结论,因此他们所关心的并不是这些成果的实用性,而是教育人们去进行抽象的推理,和激发人们对理想与美的追求。因此,看到这个时代具有很难为后世超越的优美文学,极端理性化的哲学,以及理想化的建筑与雕刻,也就不足为奇了。

    一个时代的总的特征在很大程度上与这个时代的数学活动密切相关。这种关系在我们这个时代尤为明显。正是在我们这个时代,数学才达到了它应该达到的范围,而且有着不同寻常的用途。这样,由于数学已经广泛地影响着现代生活和思想,今天的西方文明与以往任何历史上的文明都有着明显的区别。

醉乡常客 发表于 2007-4-11 12:24:43

兄弟应该说说转贴理由。
页: [1]
查看完整版本: 克莱因论数学与文化