|
楼主 |
发表于 2007-5-19 13:52:20
|
显示全部楼层
《狄拉克方程》序言——翻译连载(完)
[align=justify]Chapter 10 finally provides a consistent framework for dealing with the negative energies in a many-particle formalism. We describe the “second quantized” Dirac theory in an (unquantized ) strong external field. The Hilbert space of this system is the Fock space which contains states consisting of an arbitrary and variable number of particles and antiparticles. Nevertheless, the dynamics in the Fock space is essentially described by implementing the unitary time evolution according to the Dirac equation. We investigate the implementation of unitary and self-adjoint operators, the consequeces for particle creation and annihilation and the connection with such topics as vacuum charge, index theory, and spontaneous pair creation.
For additional information on the topics presented here the reader should consult the literature cited in the notes at the end of the book. The notes describe the sources and contain some references to physical applications as well as to further mathematical developments.
This book grew out of several lectures I gave at the Freie Universit鋞 Berlin and at the Karl-Franzens Universit鋞 Graz in 1986-1988. Parts of the manuscript have been read carefully by several people and I have received many valuable comments. In particular I am indebted to W. Beiglb6ck, W. Bulla, V. Enss, F. Gesztesy, H. Grosse, B. Helffer, M. Klaus, E. Lieb, L. Pittner, S. N.M. Ruijsenaars, W. Schweiger, S. Thaller, K. Unterkofler, and R. Wrist, all of whom offered valuable suggestions and pointed out several mistakes in the manuscript.
I dedicate this book to my wife Sigrid and to my ten-year-old son Wolfgang, who helped me to write the computer program producing Fig. 7.1.
Graz, October 1991
最后,第10章提供了处理多粒子结构负能量问题的一个统一框架。我们描述一种(非量子化的)强外场中“二次量子化”狄拉克理论。这一系统的希尔伯特空间实际上就是包含由任意的和数目可变的粒子和反粒子组成的状态的Fock空间。然而,Fock空间的动力学,本质上是由根据狄拉克方程实现幺正时间演化所描述的。我们研究幺正和自伴随矩阵的实现,粒子产生和湮灭的因果关系,以及光作为真空电荷的联系,指标理论,和自然的电子偶的产生。
至于出现在书中论述光的附加内容,读者应该参考书末中所列注释中的文献。这些注释描述其来源并包含一些有关物理应用及进一步数学发展的参考文献。
本书产生于1986-1988年期间我在柏林Freie大学和格拉茨Karl-Franzens大学几个讲义。原稿的部分章节已经由几位同行认真阅读并且我已经收到一些有价值的注释。我尤其感激W. Beiglb6ck, W. Bulla, V. Enss, F. Gesztesy, H. Grosse, B. Helffer, M. Klaus, E. Lieb, L. Pittner, S. N.M. Ruijsenaars, W. Schweiger, S. Thaller, K. Unterkofler, and R. Wrist,他们提出有价值的建议并指出了原稿中的几处错误。
谨以此书献给我的妻子西格丽德和我十岁的儿子沃尔夫冈他帮助我写了描绘插图7.1的计算机程序。
1991年10月于格拉茨
Bernd Thaller |
|