CO2地热热管流动与传热的研究
为减排节能,欧洲目前十分重视热泵的研究和推广使用。热泵热量的来源分空气源、水源和地源。显然,大冬天的,使用地源热泵是比较理想的选择。
我们准备开展的研究围绕 CO2在垂直波纹管中,液膜靠重力沿管壁向下流动并从管壁吸热蒸发,蒸汽在管中向上流动,在这样一种情况下的流动与传热特性的研究。
和我的另一个帖子“白藜芦醇的吸附特性和高纯度白藜芦醇的制取”(http://www.readfree.net/bbs/read-htm-tid-4549622.html)一样,首先是参考文献的收集。我自己还没开始做,如果哪位手头正好有相关文献的我也想以每份2C收购(不计重复的,并请PM告知),我已经收集到的文献列在帖子后面,也供国内学者参考。
作为主题讨论我先开个帖子,以后将把我这里的准备的进展情况不时地在这个帖子里和大家交流。
其次是和Helmut-Schmidt大学开展国际科研合作并申请相关研究课题。希望国内有兴趣的学者通过摆渡,可以先参加这里的讨论,建立联系,并最终能参加合作研究。我在教学相长中“招博”帖已经提到了,也希望国内获得硕士学位的学者有机会到我这里攻博,并参与项目研究。
今年的DAAD招生就过去了,我没要到想要的人。建议在国内高校工作的年轻硕士敢于申请DAAD奖学金。学校的关节要你们自己打通,并就上述两个课题作前期准备(发表1、2篇论文),争取明年的成功申请。
另外,中德政府间的科技交流每年都有。我牵线搭桥成功过一次。国内科技部每年征集一次研究课题,德国也一样,然后双方把各自国家的学者的申请拿到一起,看看有没有相同课题的,然后从中挑选。申请成功后国内学者可以来德国从事研究工作1年。
那次,同济大学的一位年轻学者(博士)就是因为我们之间已经有国际合作研究活动,从学校抢到了这个申报名额,嘿嘿,德方教授申报的相关研究方向和进展情况早就告知国内了,所要研究的关键问题也都了解。国内报到部里的研究计划就做得相当漂亮,当然就容易批准。
最近,DAAD刚推出申请培养外国学生攻读博士的计划,明年2月底截至,我还得好好研究,看看哪究竟是什么玩意,好像是校际合作,联合培养博士。研究方向和上述两个课题有关的硕士研究生打算到德国读博士的,也可以留心一下,(强化传热、制冷技术在此帖交流,过程工程在上面提到的另一主题讨论帖交流)。
参考文献
5492. C.Y. Park and P.S. Hrnjak, CO2 and R410A flow boiling heat transfer, pressure drop, and flow pattern at low temperatures in a horizontal smooth tube, International Journal of Refrigeration, Volume 30, Issue 1, January 2007, Pages 166-178
5493. S. B. Riffat and X. Zhao, A novel hybrid heat-pipe solar collector/CHP systePart II: theoretical and experimental investigations, Renewable Energy, Volume 29, Issue 12, October 2004, Pages 1965-1990
5494. Xin-Rong Zhang, Hiroshi Yamaguchi and Daisuke Uneno, Experimental study on the performance of solar Rankine system using supercritical CO2, Renewable Energy, Volume 32, Issue 15, December 2007, Pages 2617-2628
5495. Katsunori Nagano, Takao Katsura and Sayaka Takeda, Development of a design and performance prediction tool for the ground source heat pump system, Applied Thermal Engineering, Volume 26, Issues 14-15, October 2006, Pages 1578-1592
5496. Chang-Hyo Son and Seung-Jun Park, An experimental study on heat transfer and pressure drop characteristics of carbon dioxide during gas cooling process in a horizontal tube, International Journal of Refrigeration, Volume 29, Issue 4, June 2006, Pages 539-546
5497. J鴕n Stene, Residential CO2 heat pump system for combined space heating and hot water heating, International Journal of Refrigeration, Volume 28, Issue 8, December 2005, Pages 1259-1265
5498. René Rieberer, Naturally circulating probes and collectors for ground-coupled heat pumps, International Journal of Refrigeration, Volume 28, Issue 8, December 2005, Pages 1308-1315
5499. Vertical tube length calculation based on available heat transfer coefficient expressions for the subcooled flow boiling region, Applied Thermal Engineering, In Press, Corrected Proof, Available online 18 May 2007, Jose Zambrana, Teresa J. Leo and Pedro Perez-del-Notario
5500. An investigation of flow characteristics and critical heat flux in vertical upward round tube, Nuclear Science and Techniques, Volume 17, Issue 3, June 2006, Pages 170-176, Pu FAN, Sui-Zheng QIU and Dou-Nan JIA
5501. Determination and correlation of heat transfer coefficients in a falling film evaporator, Journal of Food Engineering, Volume 73, Issue 4, April 2006, Pages 320-326, J.S. Prost, M.T. González and M.J. Urbicain
5502. Cocurrent turbulent mixed convection heat and mass transfer in falling film of water inside a vertical heated tube, International Journal of Heat and Mass Transfer, Volume 46, Issue 18, August 2003, Pages 3497-3509, M. Feddaoui, A. Mir and E. Belahmidi
5503. Energy analysis of evaporating thin falling film instability in vertical tube, International Journal of Heat and Mass Transfer, Volume 45, Issue 9, April 2002, Pages 1889-1893, Xiao-Ze Du, Bu-Xuan Wang, Shao-Rong Wu and Sheng-Yao Jiang
5504. Heat transfer to evaporating liquid films within a vertical tube, Chemical Engineering and Processing, Volume 41, Issue 1, January 2002, Pages 23-28, Roman Krupiczka, Adam Rotkegel and Zenon Ziobrowski
5505. Evaporation and condensation of steam-water in a vertical tube, Nuclear Engineering and Design, Volume 207, Issue 2, July 2001, Pages 137-145, G. Sun and G. F. Hewitt
5506. Dynamic simulation of large boilers with natural recirculation, Computers & Chemical Engineering, Volume 23, Issue 8, 1 August 1999, Pages 1031-1040, E. J. Adam and J. L. Marchetti
5507. Forced convective heat transfer of refrigerant 22 evaporating in upward and downward flow in U-bends, International Journal of Refrigeration, Volume 17, Issue 4, 1994, Pages 250-256, B. Ouzia, C. Marvillet and M. Feidt
5508. Evaporation of R407C/oil mixtures inside corrugated and micro-fin tubes, Applied Thermal Engineering, Volume 27, Issue 13, September 2007, Pages 2226-2232, Waldemar Targanski and Janusz T. Cieslinski
5509. Counter-current gas–liquid flow in a vertical narrow channel—Liquid film characteristics and flooding phenomena, International Journal of Multiphase Flow, Volume 32, Issue 1, January 2006, Pages 51-81, E.I.P. Drosos, S.V. Paras and A.J. Karabelas
5510. An experimental study of the gas entrapment process in closed-end microchannels, International Journal of Heat and Mass Transfer, Volume 48, Issues 25-26, December 2005, Pages 5150-5165, Ana V. Pesse, Gopinath R. Warrier and Vijay K. Dhir
5511. An experimental study of the gas entrapment process in closed-end microchannels, International Journal of Heat and Mass Transfer, Volume 48, Issues 25-26, December 2005, Pages 5150-5165, Ana V. Pesse, Gopinath R. Warrier and Vijay K. Dhir
5512. Correlation to predict heat transfer characteristics of a closed end oscillating heat pipe at critical state, Applied Thermal Engineering, Volume 25, Issues 14-15, October 2005, Pages 2138-2151, T. Katpradit, T. Wongratanaphisan, P. Terdtoon, P. Kamonpet, A. Polchai and A. Akbarzadeh
5513. Flooding limited CHF in a vertical 3 × 3 rod bundle with non-uniform axial heat flux, Nuclear Engineering and Design, Volume 235, Issue 1, January 2005, Pages 77-90, Seok Cho, Se-Young Chun, Sang-Ki Moon, Won-Pil Baek and Yoo Kim
5514. Heat transfer characteristics of a two-phase closed thermosyphon to the fill charge ratio, International Journal of Heat and Mass Transfer, Volume 45, Issue 23, November 2002, Pages 4655-4661, Yong Joo Park, Hwan Kook Kang and Chul Ju Kim
5515. Countercurrent flooding limited critical heat flux in vertical channels at zero inlet flow, International Communications in Heat and Mass Transfer, Volume 24, Issue 4, July-August 1997, Pages 453-464, Cheol Park, Won-Pil Baek and Soon Heung Chang
5516. Flooding limit in closed, two-phase flow thermosyphons, International Journal of Heat and Mass Transfer, Volume 40, Issue 9, June 1997, Pages 2147-2164, Mohamed S. El-Genk and Hamed H. Saber
5517. Mathematical model of a loop heat pipe with cylindrical evaporator and integrated reservoir, Applied Thermal Engineering, In Press, Corrected Proof, Available online 28 July 2007, Valeri V. Vlassov and Roger R. Riehl
5518. Onset of flooding in a small diameter tube, International Communications in Heat and Mass Transfer, In Press, Uncorrected Proof, Available online 20 November 2007, Krittapas Saenmart, Panachat Cheowuttikul, Adirek Suriyawong and Somchai Wongwises
5519. Study of countercurrent flow limitation in a horizontal pipe connected to an inclined one, Nuclear Engineering and Design, Volume 235, Issues 10-12, May 2005, Pages 1139-1148, Moysés Alberto Navarro, ,
BOOKISH老师,不知道你是说热管还是热泵,标题是热管,内容讲的是热泵。
我了解的是:热管是利用相变作用,热泵是引射混合过程。
还听说,中圣集团为青藏铁路沿线插了很多根热泵。 在上海,现在大概家家都有空调了吧?过去人们用的是窗式空调,敲破一块玻璃,把窗式空调往窟窿里一塞,接上电源,家里就凉快多了。
到了冬天,如果冷得受不了了,可以把窗式空调调换一个方向,就可以用来取暖了。
现在多数家庭使用的是分体式空调,由室内机和室外机两部分组成。室内机是蒸发器,经过节流降压的低温低压制冷剂液体在蒸发器中吸热蒸发。室外机是冷凝器,从压缩机出来的高温高压制冷剂蒸汽在冷凝器中被室外的空气冷却,凝结成液体。
有的家庭购买的是热泵型空调,到了冬天,空调就切换到制热状态,其实是两个换向阀门让制冷剂流向室内机和室外机的方向对换一下,使得室内机变成了冷凝器,而室外机则作为蒸发器使用。
严格地说,所有的制冷空调都是热泵。水泵是把水从低处(低压区)输送到高处(高压区),热泵是把热量从低温区输送到高温区。即,在夏天,把热量从室内输送到室外,在冬天把热量从室外输送到室内。
所谓的制冷空调、热泵空调、制冷制热两用空调只是为了从用途上加以区分而已。
(青藏铁路沿线插的一根根柱子叫热管,其热端在冻土层,冷端在空气中,把地表的热量传给外界冷空气,从而使地表保持冻土状态,避免铁路路基松动) 地源热泵从地下获取热量。比较成熟的技术是U型管。
往地下打井,埋入U型管。从热泵蒸发器出来的载冷剂被泵入U型管,在流经U型管时吸收土壤中的热量而被加热,再返回到蒸发器,把热量传给蒸发器中的制冷剂,使制冷剂液体蒸发。
这种方案有几个不足之处。
1、克服载冷剂流动阻力所需的泵耗功——泵的不停运转所耗费的电力虽不能和压缩机相比,但积少成多,也不是一笔小数目。
2、载冷剂外泄对地下水系的可能的破坏。
3、由于载冷剂的流速较低,换热系数相对较低。
4、U型管耗材使得成本上升。
我们想要研究的是一种新技术中的学术问题,用二氧化碳热管代替U型管,把热量从地下提取出来。该热管埋入地下的是热管的蒸发段,为不锈钢波纹管,属于重力热管,从学术研究的角度,有如下问题需要研究,
1、垂直波纹管内降膜蒸发传热性能及其强化
2、上升蒸汽流对液体向下流动的影响、携带极限、临界热流密度
3、入口段设计对入口段液泛点的影响
4、流态的可视化实验研究
5、红外技术测量管内局部沸腾换热系数
6、液膜厚度沿管长分布的测量和(或)计算
……
在这些方面,对于垂直光滑管已经有成熟的研究。但对于垂直波纹管的研究情况我还不甚了解,希望能和大家交流。
(或许哪位有心人根据我们这里的讨论,去申请国家自然科学基金,我将很乐意给予支持,并希望能进一步建立合作交流。) 大致看明白了,用热管把热量传上来……
而后用热泵去升级为高温热量。 与本课题相关的一个热传导题目,学高等传热学或偏微分方程的正好可以做个练习。
下列柱坐标系一维非稳态导热问题的解析解在奥其西克的《热传导》的115页有(高等教育出版社1983年版,CADAL号07099443 ,总页数769),并可进一步得到在 r = 1 处的热流密度(即dT/dr)随时间变化的解析解,
这个计算里面有无穷积分,因此,需要继续算出其中包含的定积分来,不知谁能解决这个问题?最后结果可以是无穷级数形式的,但必须要有较快的收敛速度才行,如果用现成的贝塞尔函数的级数表达式,那么积分后 r 趋向于无穷大就不好解决,也就是说,这个幂级数应该是含有 (1/r) 的幂函数。
(之前的问题很好解决,这个问题有点烦,如能解决,应该奖励120财富了) 根据贝塞尔函数的关系式,Q的计算可以化简,得到,
到此,接下去的计算问题其实已经解决了,只是需要在把贝塞尔函数的级数表达式代入之后如何巧妙地化简上述算式,并要考虑beta=0时如何处理 Y0和Y1。
这里再提示一下,此数学模型是用来计算热管在地下的得热量的(经验值50W/m),所以可以先不考虑极短时间内的热流密度的计算。
(此题的讨论和奖励,如果有的话,到22日晚上结束)
页:
[1]